首页|基于多尺度与坐标注意力机制的交通标志识别研究

基于多尺度与坐标注意力机制的交通标志识别研究

扫码查看
针对智能交通识别系统需要具备较高的检测速度和识别精度的要求,在YOLOv4-tiny算法的基础上提出一种基于多尺度与坐标注意力机制融合的改进型轻量化YOLOv4-3RSCtiny算法.首先将主干网络中的Resblock_body模块改进为参数量更少的ResblockD轻量化模块,用于提高算法的检测速度;其次引入特征金字塔池化网络,丰富深层特征图的空间信息,在预测阶段引入坐标注意力机制,降低背景信息的干扰;最后利用具有多次跨级融合的路径增强特征金字塔网络,提高算法对小型目标物体的识别率.在TT100K数据集上进行测试,实验结果表明,相较于YOLOv4-tiny算法,YOLOv4-3RSCtiny算法具有较高的准确性和较好的实时性.
Research on traffic sign recognition based on multi-scale and coordinate attention
Aiming at the requirement of high detection speed and recognition accuracy for intelligent traffic recognition system,an improved lightweight YOLOv4-3RSCtiny algorithm based on the fusion of multi-scale and coordinate attention mechanism is proposed on the basis of YOLOv4-tiny algorithm.Firstly,the Resblock_body module in the backbone network is improved into a ResblockD lightweight module with fewer parameters as a way to improve the detection speed of the algorithm.Secondly,the feature pyramid pooling network is introduced to enrich the spatial information of the deep feature maps.Next,the coordinate attention mechanism is introduced in the prediction stage to reduce the interference of the background information.Finally,the path enhancement algorithm is proposed by using the path enhancement algorithm with the path-enhanced feature pyramid network with multiple cross-level fusion to improve the recognition rate of the algorithm for small target objects.Finally,by testing the algorithm on the TT100K dataset,the experimental results show that the YOLOv4-3RSCtiny algorithm has a better performance compared to YOLOv4-tiny,with higher accuracy and better real-time performance.

ResblockD modulefeature pyramid pooling networkpath-enhanced feature pyramid networkcoordinate attention mechanism

胡腾、杨毅强、邹显迪、孙潇、毛国斌

展开 >

四川轻化工大学自动化与信息工程学院,四川宜宾 644000

四川轻化工大学计算机科学与工程学院,四川宜宾 644000

ResblockD模块 特征金字塔池化网络 路径增强特征金字塔网络 坐标注意力机制

人工智能四川省重点实验室项目四川省科技厅项目

2023RYY062022ZHCG0035

2024

齐齐哈尔大学学报(自然科学版)
齐齐哈尔大学

齐齐哈尔大学学报(自然科学版)

影响因子:0.182
ISSN:1007-984X
年,卷(期):2024.40(5)