首页|一种基于粒子群优化-人工神经网络的人工智能方法优化风电场布局研究

一种基于粒子群优化-人工神经网络的人工智能方法优化风电场布局研究

扫码查看
随着可再生能源的需求不断增长,风电场在利用风能资源生产清洁电力方面发挥着重要作用。风电场中风力涡轮机结构对能量提取效率有重大影响。本文描述了一种独特的优化风电场风力涡轮机位置的策略,该策略结合了粒子群优化(PSO)和人工神经网络(Ann)的优点。PSO方法用于探索求解空间并制定初步的涡轮机布局,ANN模型用于根据预测的发电量微调布局。本文所提出的混合方法旨在增加能量输出,同时考虑特定地点的风力模式和地形限制。通过综合模拟和与现有方法的比较,证明了PSO-ANN混合方法的有效性和优越性,为开发更高效、更可持续的风电场提供了较好的前景。在该方法中集成人工神经网络和粒子群算法至关重要,因为它利用了这两种技术的互补优势。此外,这种新方法通过人工神经网络利用历史数据来确定与风速和风向一致的最佳涡轮机位置,并提高能量提取效率。在各种情况下,发电量显著增加。发电量的百分比增长从大约7。7%上升到11。1%。由于其多功能性和对特定场地条件的适应性,该混合模型为推进风电场布局优化领域和促进更绿色、更可持续的能源未来提供了广阔的前景。
Optimizing wind farm layout for enhanced electricity extraction using a new hybrid PSO-ANN method
With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future.

Layout optimizationTurbine placementWind energyHybrid optimizationParticle swarm optimizationArtificial neural networksRenewable energyEnergy efficiency

马里亚姆·埃尔·贾迪、图里亚·海蒂、阿卜杜勒阿齐兹·贝尔夫奇、摩尼亚·法拉、阿塔尔·蒂尔麦

展开 >

LAGES Laboratory,Hassania School of Public Works(EHTP),Casablanca 20230,Morocco

LESE Laboratory,National School of Electricity and Mechanics(ENSEM),Casablanca 20100,Morocco

LAGCET Laboratory,Hassania School of Public Works(EHTP),Casablanca 20230,Morocco

布局优化 涡轮机布局 风能 混合优化 粒子群优化 人工神经网络 可再生能源 能源效率

2024

全球能源互联网(英文)

全球能源互联网(英文)

CSTPCDEI
ISSN:2096-5117
年,卷(期):2024.7(3)