首页|基于图像识别的农村光伏台区负荷分布建模方法研究

基于图像识别的农村光伏台区负荷分布建模方法研究

扫码查看
农村台区光伏资源的开发是提升太阳能在能源结构中的比重、实现"双碳"目标的重要途径之一。但是农村电网数字化水平不足,台区负荷分布情况处于盲区,无法进行台区光伏可开放容量计算以及节点电压推演。为了给农村台区分布式光伏资源开发提供科学决策依据,本文提出一种基于遥感图像识别的农村光伏台区负荷分布建模方法。首先,使用基于YOLOv5模型的深度学习技术对遥感图像中的房屋进行精准识别,通过房屋的分布来估计台区的负荷分布。然后,采用等间距分布模型和聚类分布模型自适应地确定配电线路中节点的位置及功率值。最后,通过广度优先搜索算法提取出线路拓扑结构进而计算光伏分布模型的相关参数。作者对所提出方案进行了编程实现,并以典型的农村台区遥感图像为例,对所提出的方法进行了分析说明。结果表明论文所提出的方法能够有效的提取配电线路结构并计算出节点的相关参数,可为最大光伏接入功率的计算提供重要支撑。
Modeling load distribution for rural photovoltaic grid areas using image recognition
Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the"carbon peaking and carbon neutrality"objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.

Deep learningRemote sensing image recognitionPhotovoltaic developmentLoad distribution modelingPower flow calculation

周宁、尚博文、张金帅、徐铭铭

展开 >

State Grid Henan Electric Power Research Institutte,Zhengzhou 450052,P.R.China

深度学习 遥感图像识别 光伏开发 负荷分布建模 潮流计算

State Grid Science&Technology Project of China

5400-202224153A-1-1-ZN

2024

全球能源互联网(英文)

全球能源互联网(英文)

CSTPCDEI
ISSN:2096-5117
年,卷(期):2024.7(3)