首页|区域大规模可调负荷聚合特征在线辨识与提取方法

区域大规模可调负荷聚合特征在线辨识与提取方法

扫码查看
本文介绍了负荷聚合的概念,即对负荷进行综合分析获取负荷的外部特性,以便进行电力系统的建模和分析.在线辨识方法是一种计算机参与数据采集、处理和系统辨识的方法,通常用于自适应控制和预测.本文提出了一种支持高比例新能源接入的大规模可调负荷动态聚合方法,旨在利用在线识别技术和特征提取方法研究区域大规模可调负荷的聚合特性.实验选取了300台中央空调作为研究对象,分析了其调节特性、经济性和舒适性.实验结果表明,随着空调调节时间从5分钟增加到35分钟,调节期间的稳定调节量从28.46减少到3.57,表明空调负荷可以在长时间内进行控制,并且在短期内具有更好的调节效果.总的来说,本文的实验结果表明,采用在线辨识技术和特征提取算法分析区域大规模可调负荷聚合特性是有效的.
Online identification and extraction method of regional large-scale adjustable load-aggregation characteristics
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.

Load aggregationRegional large-scaleOnline recognitionFeature extraction method

李思维、岳靓、孔祥玉、王成山

展开 >

Key Laboratory of Smart Grid of Ministry of Education,Tianjin University,Tianjin 300072,P.R.China

Beijing Fibrlink Communications Co.,Ltd.,Beijing 100071,P.R.China

负荷聚合 区域大规模 在线辨识 特征提取方法

State Grid Science&Technology Project

5100-202114296A-0-0-00

2024

全球能源互联网(英文)

全球能源互联网(英文)

CSTPCDEI
ISSN:2096-5117
年,卷(期):2024.7(3)