首页|用于输电线路异常目标检测的高能效低位宽浮点型数据研究

用于输电线路异常目标检测的高能效低位宽浮点型数据研究

扫码查看
在目标检测应用中,实现精度与效率的平衡是一个重要的研究课题。为了检测功率边缘的输电线路上的异常目标,本文提出了一种有效的减小网络数据位宽进行浮点量化的方法。该方法通过执行指数预对准和尾数移位操作,避免了标准浮点数据频繁的对准操作,从而进一步减少了训练过程中输入的指数和尾数位宽度。这使得训练低数据位宽度的模型具有较低的硬件资源消耗,同时保持准确性。在输电线路异常目标的真实图像数据集上进行了实验测试。结果表明,在保持基本精度的同时,与单精度数据相比,该方法可以显著降低数据位宽。这表明该方法在提高传输电路中异常目标的实时性方面具有显著的能力。此外,定性分析表明,所提出的量化方法特别适用于存储和计算集成且具有良好可移植性的硬件体系结构。
Research on high energy efficiency and low bit-width floating-point type data for abnormal object detection of transmission lines
Achieving a balance between accuracy and efficiency in target detection applications is an important research topic.To detect abnormal targets on power transmission lines at the power edge,this paper proposes an effective method for reducing the data bit width of the network for floating-point quantization.By performing exponent prealignment and mantissa shifting operations,this method avoids the frequent alignment operations of standard floating-point data,thereby further reducing the exponent and mantissa bit width input into the training process.This enables training low-data-bit width models with low hardware-resource consumption while maintaining accuracy.Experimental tests were conducted on a dataset of real-world images of abnormal targets on transmission lines.The results indicate that while maintaining accuracy at a basic level,the proposed method can significantly reduce the data bit width compared with single-precision data.This suggests that the proposed method has a marked ability to enhance the real-time detection of abnormal targets in transmission circuits.Furthermore,a qualitative analysis indicated that the proposed quantization method is particularly suitable for hardware architectures that integrate storage and computation and exhibit good transferability.

Power edgeData formatQuantificationCompute-in-memory

王辰、彭国政、宋睿、张鋆、严莉

展开 >

China Electric Power Research Institute,Beijing 100192,P.R.China

Information&Telecommunications Company,State Grid Shandong Electric Power Company,Jinan 250001,P.R.China

边缘功率 数据格式 量化 存算一体

State Grid Corporation Basic Foresight Project

5700-202255308A-2-0-QZ

2024

全球能源互联网(英文)

全球能源互联网(英文)

CSTPCDEI
ISSN:2096-5117
年,卷(期):2024.7(3)