首页|CMA-BJ系统总云量预报性能检验评估

CMA-BJ系统总云量预报性能检验评估

扫码查看
云是天气气候中最重要、最活跃的因子之一,对大气系统的辐射能量平衡和水分循环起到重要调制作用。对总云量进行有技巧的预报也为更好把握天气现象、预测光伏发电等新能源出力提供客观依据。中国气象局北京快速更新循环数值预报系统(CMA-BJ)可提供我国逐小时高分辨率总云量预报产品,本文采用时间尺度分离的方法对其预报性能开展系统性评估,并对误差来源进行分析,从而为产品释用和模式改进提供参考。结果表明,CMA-BJ总体能够抓住总云量的空间分布以及日变化强度特征,在1~24 h时效预报和观测的总云量空间相关系数在各月均超过0。6,但在冬季(1月)对总云量和日变化强度存在较为明显的低估,全国平均云量负偏差达一0。133。随着预报时效的延长,模式对云量逐时变率的预报能力有所下降,预报第1至第4天的平均TCC分别为0。470、0。409、0。355、0。315,有技巧的预报可维持至48~72 h。诊断分析表明,模式中相对湿度偏小可能是造成总云量预报负偏差的主要来源之一,垂直速度预报偏差也是影响云量预报误差的重要原因。
Verification and Evaluation of Total Cloud Cover Prediction Performance of CMA-BJ
Cloud is one of the most important and active factors in weather and climate,and plays an impor-tant role in modulating the radiation-energy balance and water cycle of atmospheric system.The effective forecast of total cloud cover can lay a basis for better grasp of weather phenomena and prediction of new energy output such as photovoltaic power generation.The model CMA-BJ(Beijing Rapid Update Cycle System)can provide hourly high-resolution total cloud cover prediction products.In this paper,the prediction performance of CMA-BJ is systematically examined and evaluated by the time scale separation method,and the error sources are analyzed,so as to provide a reference for product interpretation and model improve-ment.The results show that the spatial distribution characteristics and diurnal variation intensity of total cloud cover can be well predicted by CMA-BJ.The pattern correlation coefficients between the CMA-BJ forecasted and observed total cloud cover with 1-24 h lead time are all greater than 0.6 in each month.However,the total cloud cover and diurnal variation intensity are significantly underestimated in winter(January),with the deviation of CMA-BJ reaching-0.133.As the forecasting time increases,the predic-tion ability of CMA-BJ decreases,with the averaged TCC skills being 0.470,0.409,0.355 and 0.315 for the 1-4 d forecast,which means the skillful prediction can be maintained up to 48-72 hours.The diag-nostic analysis shows that the low relative humidity in the model may largely contribute to the negative de-viation in total cloud cover prediction.Besides,the bias of vertical velocity prediction is also an important reason for the cloud cover prediction error.

total cloud coverCMA-BJperformance evaluation

张帅、吴捷、陈敏、仲跻芹、黄向宇、卢冰、杨扬

展开 >

北京城市气象研究院,北京 100089

中国气象局城市气象重点开放实验室,北京 100089

中国气象局气候预测研究重点开放实验室,国家气候中心,北京 100081

南京信息工程大学气象灾害预报预警与评估协同创新中心,南京 210044

展开 >

总云量 CMA-BJ 性能评估

国家重点研发计划国家自然科学基金项目中国气象局重点创新团队中国气象局青年创新团队北京市自然科学基金项目

2021YFC300090142175052CMA2022ZD09CMA2024QN068212027

2024

气象
国家气象中心

气象

CSTPCD北大核心
影响因子:2.337
ISSN:1000-0526
年,卷(期):2024.50(9)