首页|基于改进长短期记忆网络的湖南网格气温预报模型

基于改进长短期记忆网络的湖南网格气温预报模型

扫码查看
基于欧洲中期天气预报中心高分辨率模式预报产品以及中国气象局陆面数据同化系统逐1 h气温实况,构建了一种改进的长短期记忆网络ED-LSTM-FCNN模型,模型中加入嵌入层模块以处理高维空间、时间特征,并通过全连接神经网络融合不同类型特征实现气温的回归预测,生成0.05°×0.05°格点逐1 h气温预报产品.针对湖南省2022年预报检验表明:ED-LSTM-FCNN模型能显著降低数值模式的预报误差,提高预报稳定性,1~24 h时效预报均方根误差较模式预报与中央气象台指导预报分别降低了 25.4%~37.7%和15.8%~40.0%;模型明显改善了数值模式在空间上(尤其是复杂地形)的预报效果,大部分地区气温均方根误差介于1.2~1.6℃;该模型在不同季节2℃误差以内的预报准确率达83.0%以上,明显高于模式预报与中央气象台指导预报,在平稳性极端高温天气中的优势更加明显,可有效应用于智能网格预报业务中.
Gridded Temperature Forecast Model in Hunan Based on Improved Long Short-Term Memory Networks
Based on forecast products of the European Centre for Medium-Range Weather Forecasts-Integrated Forecasting System(ECMWF-IFS)and hourly temperature observation data from the CMA Land Data Assimilation System(CLDAS),an enhanced model named ED-LSTM-FCNN is constructed,with an embedding layer module incorporated to handle high-dimensional spatial and temporal features.A fully connected neural network is utilized to integrate various feature types,achieve regression prediction of temperature,and generate gridded hourly temperature forecast products with a resolution of 0.05°× 0.05°.Verification for the forecast products in Hunan Province in 2022 shows that this model exhibits a notable capacity to mitigate forecast errors inherent in the numerical model,and can enhance the overall fore-cast stability.The root mean square errors(RMSEs)of forecasts with lead time ranging from 1 to 24 hours exhibit a reduction of 25.4%-37.7%when compared to ECMWF-IFS and a decrease of 15.8%-40.0%relative to the National Meteorological Centre forecast(SCMOC).The model can significantly im-prove the forecast performance of ECMWF-IFS forecast,in spatial scale,particularly in regions character-ized by intricate terrain.The RMSEs across most areas vary within the range of 1.2-1.6℃.The forecast accuracy of the model,with an error margin of±2℃,surpasses 83.0%across various seasons,demon-strating a significant improvement compared to both ECMWF-IFS and SCMOC.The forecasting perform-ance is notably superior,particularly in stable extreme high-temperature weather conditions compared to alternative products.In conclusion,this model has proved to be effective in the high-resolution tempera-ture forecasting operations.

gridded forecastlong short-term memory networktemperature forecastdeep learning

卢姝、陈鹤、陈静静、赵琳娜、郭田韵

展开 >

气象防灾减灾湖南省重点实验室,长沙 410118

湖南省气象台,长沙 410118

中国气象科学研究院,北京 100081

湖南省气象服务中心,长沙 410118

展开 >

网格预报 长短期记忆网络 气温预报 深度学习

2025

气象
国家气象中心

气象

北大核心
影响因子:2.337
ISSN:1000-0526
年,卷(期):2025.51(4)