首页|基于年际增量法的广西6月月降水量预测

基于年际增量法的广西6月月降水量预测

扫码查看
利用广西87个气象站6月月平均降水量及NCEP/NCAR再分析资料,通过普查1960-2021年广西6月月降水量年际增量与前期500 hPa位势高度场的相关性,选取影响广西6月降水异常相关性较高的前期预测因子,研究其主要影响机制,并采用模糊神经网络与熵度量相结合的方法构建月降水年际增量的集合预报模型,对预测模型进行1960-2013年的拟合检验和2014-2021年的独立样本预报检验.结果发现,该模型的预测准确率较高,独立样本的回报年份同号率为87.5%,拟合平均绝对误差为26.64 mm,拟合平均相对误差为9.06%,预报效果优于利用逐步回归方法构建的预测模型,而且模型性能比较稳定,具有较好的业务应用前景.
Research on Monthly Precipitation Prediction in Guangxi in June Based on Interannual Incremental Method
By employing the monthly average precipitation from 87 stations in Guangxi in June and NCEP/NCAR reanalysis data,the correlation between the interannual increment of monthly precipitation in Guangxi in June and the 500 hPa geopotential height field in the previous period from 1960 to 2021 is under investigation.Selecting the precursor signals that impact the precipitation anomaly in Guangxi in June occurs as part of this investigation.An ensemble forecasting model of the interannual increment of monthly precipitation,constructed by combining the fuzzy neural network and entropy metric method,is in continual operation.The cross-check of the prediction model from 1960 to 2013 and the independent sample test from 2014 to 2021 happen regularly.Results display a relative high prediction accuracy of the model,with a correlation coefficient of 0.93 between the predicted and actual values of the interannual increments of the return sample,passing the significance test of α=0.001.There is a return-year homogeneity rate of 87.5%,a fitted mean absolute error of 26.64 mm,and a fitted mean relative error of 9.06%.This model is more stable than the prediction model built by the traditional stepwise regression method.For this reason,the entropy metric-fuzzy neural network ensemble prediction model sees better prospects for operational forecasting of short-term climate drought and flood trends.

interannual incremental methodmonthly precipitationentropy metricfuzzy neural network ensemble method

蔡悦幸、史旭明、陆虹、金龙、罗小莉

展开 >

广西壮族自治区气候中心,南宁 530022

桂林航天工业学院,桂林 541004

年际增量法 月降水 熵度量 模糊神经网络集合方法

国家自然科学基金广西自然科学基金广西气象科技研究计划项目

420650042023GXNSFAA026511桂气科2023Z05

2024

气象科技
中国气象科学研究院 北京市气象局 中国气象局大气探测技术中心 国家卫星气象中心 国家气象信息中心

气象科技

CSTPCD
影响因子:1.154
ISSN:1671-6345
年,卷(期):2024.52(1)
  • 54