首页|基于支持向量机和蚁群算法的热电联产电力接线网络优化方法

基于支持向量机和蚁群算法的热电联产电力接线网络优化方法

扫码查看
为更好地满足不同用户的能源需求,创造更多经济效益,提出一种基于支持向量机和蚁群算法的热电联产电力接线网络优化方法.计算电力产热产电比,以燃料成本、网络损耗最小化为目标,创建热电联产电力接线网络模型;考虑日分类、星期分类、天气分类等元素,使用近大远小原理选择电力数据样本,采用支持向量机预测热电联产电力负荷;运用蚁群算法寻找电力接线网络最优配置方案,利用轮盘赌机制挑选最优路径,引入物元分析中的距离和关联函数概念,设支路中的关联函数值大于 0 为较优支路,完成热电联产电力接线网络优化计算.实验结果证明,所提方法在多个测试案例中均取得良好的优化效果,实现了能源高效利用,具有重要的实际应用价值.
Optimization method for power connection network of cogeneration based on support vector machine and ant colony algorithm
In order to better meet the energy needs of different users and create more economic benefits,a cogeneration power connection network optimization method based on support vector machine and ant colony algorithm is proposed.Calculate the heat to electricity ratio of electricity generation,with the goal of minimizing fuel costs and network losses,and create a cogeneration power connection network model;Consider elements such as day classification,week classification,and weather classification,use the principle of near large far small to select power data samples,and use support vector machines to predict the power load of cogeneration;Using ant colony algorithm to search for the optimal configuration scheme of power connection network,using roulette wheel mechanism to select the optimal path,introducing the concepts of distance and correlation function in matter element analysis,setting the correlation function value in the branch greater than 0 as the optimal branch,and completing the optimization calculation of cogeneration power connection network.The experimental results demonstrate that the proposed method has achieved good optimization results in multiple test cases,achieving efficient energy utilization,and has important practical application value.

support vector machineant colony algorithmcombined heat and power generationpower wiring networkload forecasting

孟金英、赵晨阳

展开 >

山西省安装集团股份有限公司,山西 太原 030032

支持向量机 蚁群算法 热电联产 电力接线网络 负荷预测

2024

区域供热
中国城镇供热协会

区域供热

影响因子:0.433
ISSN:1005-2453
年,卷(期):2024.(4)
  • 12