首页|基于极限学习机的冷凝器模型及参数优化分析

基于极限学习机的冷凝器模型及参数优化分析

扫码查看
冷凝器是空调制冷机系统的重要部件,对整个空调系统运行起到了至关重要的作用.为了获得精度高、耗时少的吸收式制冷系统冷凝器模型,提出一种结合启发式优化算法和极限学习机(Extreme Learning Machine,ELM)的建模方法.首先,利用极限学习机建立冷凝器数学模型,并分别使用粒子群算法(Particle Swarm Optimization,PSO)和蚁群算法(Ant Colony Algorithm,ACO)确定极限学习机的最优参数值.然后,通过误差评价指标对比两种模型的优劣.结果表明,所建立的两种模型精度均保持在±5%以内,但PSO-ELM冷凝器模型的MAPE与运行时间均较低,粒子群算法计算的参数使模型精度更高、耗时更少.
Condenser model and parameter optimization analysis based on extreme learning machine
The condenser is an important component of the air conditioning refrigeration system and plays a crucial role in the operation of the entire air conditioning system.In order to obtain a high-precision and time-saving condenser model for absorption refrigeration systems,the modeling method is proposed that combines heuristic optimization algorithms and Extreme Learning Machine(ELM).Firstly,the mathematical model of the condenser is established using an extreme learning machine,and the optimal parameter values of the extreme learning machine are determined using Particle Swarm Optimization(PSO)and Ant Colony Algorithm(ACO),respectively.Then,compare the advantages and disadvantages of the two models through error evaluation indicators.The results show that the accuracy of the two established models is within±5%.The MAPE and running time of the PSO-ELM condenser model both are low.It can be concluded that the parameters calculated by the particle swarm algorithm make the model more accurate and less time-consuming.

condenserparticle swarm optimizationant colony algorithmextreme learning machineintelligent optimization

卜克俭、杨东润、王晓雨、杨玉萍、刘雨婷、张博

展开 >

山东建筑大学,山东 济南 250101

济南二机床集团有限公司,山东 济南 250022

冷凝器 粒子群算法 蚁群算法 极限学习机 智能优化

2024

区域供热
中国城镇供热协会

区域供热

影响因子:0.433
ISSN:1005-2453
年,卷(期):2024.(6)