首页|基于支持向量机的起重机限位器故障识别

基于支持向量机的起重机限位器故障识别

扫码查看
起重机高度限位器作为保障起重机安全的重要部件,其质量好坏决定着起重机的运行安全.文中提出了基于支持向量机SVM(support vector machines)的起重机高度限位故障识别方法,利用主分量分析特征提取算法获取限位器故障信号特征,并结合支持向量机算法对起重机限位器监测信号进行分类识别,获取实时监测限位器质量信号.研究表明,主分量分析特征提取算法可以有效降低限位器检测信号数据量,获取有效的限位器信号特征,并通过支持向量机算法可以有效识别起重机限位器故障信号,识别精度达到 95%,显著提高了限位器故障的诊断效率和精度.
The height limiter of crane is an important component to ensure the safety of crane,and its quality is very important for the safety operation of cranes.Therefore,a crane height limit failure identification method based on support vector machines(SVM)is proposed.The feature extraction algorithm of principal component analysis was adopted to obtain the failure signal characteristics of limiters,and the monitoring signals of the crane limiter were classified and identified by combining with the support vector machine algorithm to obtain the signals for real-time quality monitoring of limiters.The research shows that the feature extraction algorithm of principal component analysis can effectively reduce the data amount of the limiter detection signal and capture the effective limiter signal features,and effectively identify the crane limiter failure signal through the support vector machine algorithm with a recognition accuracy reaching 95%,which significantly improves the efficiency and accuracy of the limiter failure diagnosis.

cranesupport vector machineprincipal component analysisheight limiterfailure identification

张顺、吕正、林辰、陈永玉

展开 >

台州市特种设备检验检测研究院 台州 318000

起重机 支持向量机 主分量分析 高度限位器 故障识别

2025

起重运输机械
北京起重运输机械设计研究院

起重运输机械

影响因子:0.214
ISSN:1001-0785
年,卷(期):2025.(1)