首页|电动机故障诊断联邦学习模型研究及技术应用

电动机故障诊断联邦学习模型研究及技术应用

扫码查看
文中提出了一种基于深度学习以及联邦学习的电动机故障诊断模型.使用Transformer模型对电动机的运行数据进行分析以及故障诊断分类,在此基础上使用Fed Prox联邦学习算法,在多个客户端上使用不同的数据训练模型,并将训练后的模型上传到中央服务器进行聚合,使用聚合后的模型对设备进行故障诊断.实验结果表明,所提出的模型具有良好的性能,对数据的故障分类准确率满足电动机故障诊断的要求,同时联邦学习的方法有助于模型获得更多的数据特征,使得模型可以更好地进行故障诊断,同时对保护数据隐私也有一定作用.
A motor failure diagnosis model based on deep learning and federated learning is proposed.Transformer model was used to analyze the running data of motor and classify the failure diagnosis.Fed Prox federated learning algorithm was adopted,different data were used to train the model on multiple clients before the trained model was uploaded to the central server for aggregation,and the aggregated model was used to carry out failure diagnose.The results show that the proposed model has good performance,and the failure classification accuracy of data can meet the relevant requirements of motor failure diagnosis.In addition,federated learning helps the model to obtain more data features,improve the quality of model failure diagnosis,and also plays a certain role in protecting data privacy.

motorfailure diagnosisTransformer modelfederated learningfederated regularization algorithm

周奇才、黄至恺、钟小勇、卢浩、邱彦杰

展开 >

同济大学机械与能源工程学院 上海 201804

中车戚墅堰所机车车辆工艺研究所股份有限公司 常州 213011

电动机 故障诊断 Transformer模型 联邦学习 联邦正则算法

2025

起重运输机械
北京起重运输机械设计研究院

起重运输机械

影响因子:0.214
ISSN:1001-0785
年,卷(期):2025.(1)