首页|基于先验特征聚类的目标检测优化方法

基于先验特征聚类的目标检测优化方法

扫码查看
针对显著目标检测问题在没有任何先验信息的情况下,通过特征聚类和紧致性先验方案实现目标检测优化.优化后的方法包括四个步骤:首先采用超像素预处理将图像分割成超像素,以抑制噪声并降低计算复杂度;其次应用改进的虾群聚类算法对颜色特征进行分类;接着利用二维熵来衡量每个簇的紧密度,并构建背景模型;最后以背景区域与其他区域之间的对比度作为显著特征,并通过设计高斯滤波器增强其显著性.为了更好地评价显著目标检测的精度,本文通过多维评价指标进行优劣性实验分析,实验结果表明,文中算法具有较好的实时性与鲁棒性.
Object Detection Optimization Based on Prior Feature Clustering
In addressing the issue of salient object detection without any prior information,this study proposes an object detection optimization method using feature clustering and a compactness prior scheme.The optimized approach consists of four steps:Firstly,a superpixel preprocessing is employed to segment the image into superpixels,suppressing noise and reducing computational complexity;Secondly,an improved shrimp swarm clustering algorithm is applied to classify color features;Additionally,two-dimensional entropy is utilized to measure the compactness of each cluster and to construct a background model;Finally,the contrast between the background region and other regions is used as a salient feature,enhanced through the design of Gaussian filters to amplify its saliency.To better evaluate the accuracy of salient object detection,this paper conducts experiments and analysis using multidimensional evaluation metrics,and the results demonstrate that the proposed algorithm exhibits good real-time performance and robustness.

salient object detectionshrimp swarm clusteringfeature priorsuperpixel preprocessing

杜淑颖、何望

展开 >

徐州生物工程职业技术学院信息管理学院,江苏徐州 221000

中国矿业大学计算机科学与技术学院,江苏徐州 221116

显著目标检测 虾群聚类 特征先验 超像素预处理

江苏高校"青蓝工程"徐州生物工程职业技术学院2023年横向项目

2023320306002892

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(1)
  • 19