首页|面向云数据中心的人工智能模型自动优化框架设计

面向云数据中心的人工智能模型自动优化框架设计

扫码查看
人工智能模型的自动调优技术能够以较低资源成本提供云数据中心的高性能智能服务.然而,人工智能模型和硬件设备具有异构性,云数据中心执行自动调优操作会产生大量计算时间,占用算力资源,产生能耗成本.针对此问题,本文设计面向云计算数据中心的人工智能模型自动优化框架.提出人工智能模型候选配置项过滤方法,利用模型构建、特征提取、候选项探索、配置查询等技术对候选项搜索空间重新采样,将高效候选项替换低效候选项.在算子优化层面,框架分批并行执行计算组件实现的硬件测量,避免连续探测搜索空间.在模型优化层面,根据多人工智能模型的相对性能加速优先跨集群的计算组件优化.该框架旨在面向不同人工智能模型,降低人工智能模型推理延迟,减少云计算数据中心能耗,从而提升人工智能模型自动调优的成本效益.
Design of Microservice Application Performance Analysis Framework for Container Cloud
The automatic tuning technology of artificial intelligence model can provide high performance intelligent services of cloud data center at lower resource cost.However,artificial intelligence models and hardware devices are heterogeneous,and automatic tuning operations in cloud data centers will generate a lot of computing time,occupy computing resources,and generate energy consumption costs.To solve this problem,this paper designs an artificial intelligence model automatic optimization framework for cloud computing data center.An artificial intelligence model candidate configuration item filtering method is proposed,which uses the techniques of model construction,feature extraction,candidate item exploration and configuration query to resample the candidate search space and replace the inefficient candidate item with the efficient candidate item.At the operator optimization level,the framework performs hardware measurements implemented by compute components in batches in parallel,avoiding continuous probing of the search space.At the level of model optimization,the optimization of computing components across clusters is prioritized according to the relative performance acceleration of multiple AI models.The framework is designed to reduce the reasoning delay of AI models for different AI models and reduce the energy consumption of cloud computing data centers,thereby improving the cost-effectiveness of automatic tuning of AI models.

cloud data centerartificial intelligencemodel optimizationconfiguration exploration

朱淘淘、饶先明

展开 >

江西锦路科技开发有限公司,江西南昌 330025

云数据中心 人工智能 模型优化 配置探索

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(1)
  • 7