首页|CBFaceNet基于双注意力机制的微表情识别网络

CBFaceNet基于双注意力机制的微表情识别网络

扫码查看
微表情识别在学生课堂、医疗等方面都发挥着重要作用.现有的微表情识别模型技术大多使用传统的特征学习方法进行特征提取,但是传统的特征学习方法识别率不高,而深度学习的方法会产生大量的运行参数.因此,提出一种轻量级的微表情识别方法,称为CBFaceNet.该模型可以实现端到端的检测,适合应用于资源有限的移动设备.在提出的模型中,融合三维注意力机制simAM增强模型对微表情关键部位特征的提取,并且能够降低模型参数.在模型中插入通道和空间注意力模块CBAM,使提取的面部特征更加丰富,同时,采用混合损失函数测试该模型.在SMIC微表情数据集中将CBFaceNet与其他模型进行比较,实验结果表明,CBFaceNet在识别精度、复杂度和模型参数方面都有着优越的性能.
CBFaceNet Micro Expression Recognition Network Based on Dual Attention Mechanism
Microexpression recognition plays an important role in student classrooms,healthcare,and other fields.Most existing micro expression recognition model technologies use traditional feature learning methods for feature extraction,but the recognition rate of traditional feature learning methods is not high,and deep learning methods will generate a large number of operating parameters.Therefore,a lightweight micro expression recognition method called CBFaceNet is proposed.This model can achieve end-to-end detection and is suitable for mobile devices with limited resources.In the proposed model,the fusion of three-dimensional attention mechanism simAM enhances the extraction of key features of micro expressions and can reduce model parameters.Insert channel and spatial attention module CBAM into the model to enrich the extracted facial features,and test the model using a mixed loss function.Comparing CBFaceNet with other models in the SMIC micro expression dataset,experimental results show that CBFaceNet has superior performance in recognition accuracy,complexity,and model parameters.

convolutional neural networkmicro-expression recognitionlightweight structureattention mechanism

李伟男

展开 >

哈尔滨师范大学,黑龙江哈尔滨 150000

卷积神经网络 微表情识别 轻量级结构 注意力机制

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(2)
  • 5