首页|基于深度学习的RCF-mmMIMO系统信道估计算法

基于深度学习的RCF-mmMIMO系统信道估计算法

扫码查看
针对无蜂窝毫米波大规模多输入多输出(CF-mmMIMO)系统信道估计存在的计算复杂度高、导频开销大等问题,提出一种基于深度学习的可重构智能表面(RIS)辅助CF-mmMIMO(RCF-mmMIMO)系统的信道估计算法.该算法引入RIS替代一部分毫米波接入点(AP),增大CF-mmMIMO下的毫米波覆盖范围和信号强度,在一定程度上解决无蜂窝架构下毫米波AP数量众多硬件成本高的问题.对同一AP上不同组天线的RIS级联信道映射关系的存在性进行证明,并通过FCNN神经网络对该信道映射进行建模,显著降低无蜂窝系统中央处理单元处理信道估计时高计算量和高导频开销.仿真实验表明,信道估计算法能够在低计算复杂度、低导频开销下有效提高信道估计的准确性,显著提高系统传输效率.
Channel Estimation Algorithm for RCF-mmMIMO System Based on Deep Learning
In response to the problems of high computational complexity and high pilot overhead in channel estimation for large-scale multi input multi output(CF-mmMIMO)systems without cellular millimeter waves,a depth learning-based channel estimation algorithm for reconfigurable intelligent surface(RIS)aided CF-MMMIMO(RCF-MMMIMO)systems is proposed.The algorithm introduces RIS to replace some millimeter wave access points(AP),increased millimeter wave coverage and signal strength under CF-mmMIMO,and to some extent,it solves the problem of high hardware cost due to the large number of millimeter wave AP in the absence of cellular architecture.Secondly,the existence of RIS cascaded channel mapping relationships for different groups of antennas on the same AP was proved,and the channel mapping was modeled using FCNN neural network,significantly reduces the high computational complexity and pilot overhead of channel estimation in the central processing unit of cellular free systems.Simulation experiments show that,channel estimation algorithms can effectively improve the accuracy of channel estimation with low computational complexity and low pilot overhead,significantly improve system transmission efficiency.

reconfigurable intelligent surfacedepth learningmillimeter wavenon-cellularmulti-input multi-output

尹航、许鹏、陈佳美、朱泽邦

展开 >

沈阳航空航天大学电子信息工程学院,辽宁沈阳 110000

可重构智能表面 深度学习 毫米波 无蜂窝 多输入多输出

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(2)
  • 7