首页|基于改进SOM+K-means算法的客户价值研究

基于改进SOM+K-means算法的客户价值研究

扫码查看
为提高多特征参数聚类相似度,针对多特征参数相关性和分布不等问题,提出一种改进的聚类算法,并以此算法研究RFM客户价值模型.此改进算法,通过矩阵旋转和压缩变换以及协方差矩阵处理,构造一种聚类相似度目标的距离函数,以此距离函数结合SOM算法和K-means算法各自优点,设计改进SOM+K-means组合聚类算法.应用该算法创建RFM客户价值模型,并实验验证.通过轮廓系数法评估,该算法聚类的轮廓系数相比原K-means和SOM算法聚类的轮廓系数,分别提高约0.129和0.126.该聚类算法提高了RFM客户价值聚类效果,为客户价值研究提供了一种新的聚类方法.
Research on Customer Value Based on Improved SOM+K-means Algorithm
To improve clustering similarity for multiple feature parameters,an improved clustering algorithm is proposed to address the issues of correlation and unequal distribution of multiple feature parameters,and the RFM customer value model is studied using this algorithm.This improved algorithm constructs a distance function for clustering similarity targets through matrix rotation and compression transformation,as well as covariance matrix processing;Based on this distance function and combining the advantages of SOM algorithm and K-means algorithm,an improved SOM+K-means combination clustering algorithm was designed.Create an RFM customer value model using this algorithm and conduct experimental verification.Through the evaluation of the contour coefficient method,the contour coefficients of the clustering algorithm are improved by approximately 0.129 and 0.126 compared to the original K-means and SOM algorithms,respectively.This clustering algorithm improves the clustering effect of RFM customer value and provides a new clustering method for customer value research.

covariance matrixself organizing neural networkK-meansclustering algorithmRFM customer value

王朋亮、单剑锋

展开 >

南京邮电大学电子与光学工程学院、微电子学院,江苏南京 210023

协方差矩阵 自组织神经网络 K均值 聚类算法 RFM客户价值

国家社科一般项目

22BTJ030

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(3)
  • 9