首页|基于深度学习YOLOv5的肺结节检测算法的改进

基于深度学习YOLOv5的肺结节检测算法的改进

扫码查看
机器学习和深度学习是目前解决目标识别问题最常用、最有效的方法.机器学习通过从现有数据中学习并构建模型,实现对未知数据的预测和判断.深度学习是机器学习的一种特殊形式,通过构建多层神经网络模型,实现对复杂问题的建模和求解.在目标识别任务中,机器学习和深度学习可以通过学习图像特征并训练分类器或检测器实现目标的自动识别.肺结节是一种常见的早期肺癌征象,精确有效地检测和识别肺结节对于早期肺癌的诊断和治疗至关重要.传统的肺结节检测方法往往依赖于手工设计的特征提取器和分类器,其性能受限于特征表达的能力和泛化能力.而深度学习技术的兴起为肺结节检测带来了新的机遇.医学图像处理和深度学习技术已经在肺结节的检测和识别中取得了显著的进展.本研究提出了一种基于深度学习YOLOv5算法改进的肺结节检测方法,该方法能够高效而准确地检测肺结节,并具有较低的误检率和漏检率.
Improvement of Lung Nodule Detection Algorithm Based on Deep Learning YOLOv5
Machine learning and deep learning are currently the most common and effective methods for solving target recognition problems.Machine learning achieves prediction and judgement of unknown data by learning from existing data and constructing models.Deep learning is a special form of machine learning,which achieves modelling and solving complex problems by constructing multi-layer neural network models.In target recognition tasks,machine learning and deep learning can achieve automatic recognition of targets by learning image features and training classifiers or detectors.Lung nodules are a common sign of early lung cancer,and accurate and effective detection and identification of lung nodules is crucial for the diagnosis and treatment of early lung cancer.Traditional lung nodule detection methods often rely on hand-designed feature extractors and classifiers,whose performance is limited by the ability of feature representation and generalisation.The rise of deep learning techniques,on the other hand,has brought new opportunities for lung nodule detection.Medical image processing and deep learning techniques have made significant progress in the detection and recognition of lung nodules.In this study,we propose an improved lung nodule detection method based on deep learning YOLOv5 algorithm,which can efficiently and accurately detect lung nodules with low false and missed detection rates.

lung nodulesmachine learningdeep learningYOLOv5

张海燕、郭丹丹、王圆、关柏成、王婧、高云飞

展开 >

内蒙古科技大学包头医学院,内蒙古包头 014060

陈巴尔虎旗人民医院,内蒙古呼伦贝尔 021500

肺结节 机器学习 深度学习 YOLOv5

包头医学院 2023年大学生创新创业训练计划项目2023年内蒙古自治区自然科学基金项目

S2023101300052023LHMS08058

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(3)
  • 11