首页|基于位置编码和BAM注意力机制的马铃薯叶部病害识别方法

基于位置编码和BAM注意力机制的马铃薯叶部病害识别方法

扫码查看
马铃薯叶部病害的准确检测和识别对于精准防治病虫害至关重要,能够有效提高马铃薯产量,但由于马铃薯叶部的早疫病和晚疫病在早期表现上非常相似,很难区分.为了更准确地对马铃薯叶部病害进行检测识别,本文提出了一种基于位置编码和并行注意力机制的ConvNeXt模型.首先对数据集进行位置编码预处理,使网络模型无需加载预训练权重即可获取病害部位的位置信息,提高学习能力;其次针对不同病害空间分布位置不同以及形态特征的细微差异,添加并行注意力机制BAM模块增强对病害特征的提取能力.实验结果表明:优化后的ConvNeXt模型能够准确检测并对不同病害进行分类识别,较原ConvNeXt模型Top-1准确率最高提高约5个百分点,能够满足目前马铃薯叶部病害准确识别方面的需求,有良好的鲁棒性,可以泛化在其他植物种类上.
A Method for Potato Leaf Disease Recognition Based on Position Encoding and BAM Attention Mechanism
Accurate detection and recognition of potato leaf diseases is essential for precise pest and disease control,and can effectively improve potato yields.However,due to the similarity in early manifestations between early and late diseases in potato leaves,it is difficult to distinguish them.In order to detect and recognize potato leaf diseases more accurately,this paper proposes a ConvNeXt model based on positional encoding and parallel attention mechanism.Firstly,the dataset is preprocessed with position encoding,so that the network model can obtain the position information of disease sites without loading pre-training weights,which improves the learning ability;Secondly,for the different spatial distribution locations of different diseases and the slight differences in morphological features,the BAM module of the parallel attention mechanism is added to enhance the model's ability of extracting disease features.The experimental results show that the optimized ConvNeXt model is able to accurately detect and classify different diseases,with a maximum increase of about 5 percentage points in accuracy compared with the original ConvNeXt model Top-1,which is able to satisfy the current demand for accurate recognition of potato leaf diseases,and it has good robustness,and can be generalized to other plant species.

potato leaf diseasesConvNeXt modelposition encodingBAM attention mechanism

王雨萌、吴呈瑜

展开 >

浙江理工大学信息科学与工程学院,浙江杭州 310018

马铃薯叶部病害 ConvNeXt模型 位置编码 BAM注意力机制

重庆邮电大学大数据智能计算重点实验室开放基金项目

BDIC-2023-B-002

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(5)
  • 12