首页|基于特征融合的图嵌入方法在以太坊钱包异常数据识别中的应用研究

基于特征融合的图嵌入方法在以太坊钱包异常数据识别中的应用研究

扫码查看
由于以太坊钱包数据具有很强的隐私性,因此在加密货币交易中,攻击者很难发现这类数据异常情况,本文研究以太坊非法交易识别应用基于特征融合的图嵌入方法.该方法包括异常数据特征提取和交易特征提取两种特征提取策略.具体而言,利用BP神经网络提取以太坊钱包异常数据特征,采用随机游走策略提取交易特征.然后,融合提取的异常数据特征和交易特征,获得以太坊钱包异常数据表示.实验结果表明,该方法各项指标优于其他算法,能够有效检测以太坊钱包异常数据.
Application Research of Graph Embedding Method Based on Feature Fusion in Ethereum Wallet Abnormal Data Recognition
In recent years,due to the strong privacy of Ethereum wallet data,it is difficult for attackers to detect such data anomalies in cryptocurrency transactions.This article studies the Ethereum illegal transaction recognition application based on feature fusion graph embedding method.This method includes two feature extraction strategies:abnormal data feature extraction and transaction feature extraction.Specifically,using BP neural networks to extract abnormal data features from Ethereum wallets,and using a random walk strategy to extract transaction features.Then,the extracted abnormal data features and transaction features are fused to obtain an Ethereum wallet abnormal data representation.The experimental results show that this method outperforms other algorithms in various indicators and can effectively detect abnormal data in Ethereum wallets.

ethereum walletabnormal transactionsgraph construction

刘浏

展开 >

中国人民公安大学,北京 100038

南昌市公安局青山湖分局,江西南昌 330000

以太坊钱包 异常交易 图构建

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(5)