首页|油气田高频高并发环境下工控大数据接入与管控技术研究

油气田高频高并发环境下工控大数据接入与管控技术研究

扫码查看
随着油气田开采技术的不断进步和工业4.0的快速发展,油气田生产环境中产生的工业控制大数据具有数据量大、产生速度快、来源多样等特性.这些大数据对于油气田的智能监控、故障预测、优化生产等方面具有巨大的价值.如何确保数据的安全性和实时性,成为当前研究的热点和难点.本文针对这些问题,提出了一种2写4读的分布式部署架构和多节点数据同步技术的工控大数据接入与管控方案,实现数据的高频高并发分析和处理,并通过实际案例验证了本文提出的工控大数据接入与管控方案的有效性和可行性.实验结果表明,该方案能够高效地处理高频高并发的工控大数据,同时保证数据的安全性和实时性,为油气田的智能监控和优化生产提供了有力的技术支持.
Research on Big Data Access and Management Technology of Industrial Control Under High Frequency and High Concurrency Environment of Oil and Gas Field
With the continuous progress of oil and gas field exploitation technology and the rapid development of industry 4.0,the industrial control big data generated in oil and gas field production environment has the characteristics of large amount of data,fast generation speed,and diverse sources.These big data are of great value for intelligent monitoring,fault prediction and production optimization of oil and gas fields.How to ensure the security and real-time of data has become a hot and difficult point in current research.To solve these problems,this paper proposes a distributed deployment architecture of 2 write and 4 read and a scheme of big data access and management of industrial control based on multi-node data synchronization technology to realize high frequency and high concurrency analysis and processing of data,and the effectiveness and feasibility of the industrial control big data access and control scheme proposed in this paper are verified by practical cases.The experimental results show that the scheme can efficiently process the high frequency and high concurrency industrial control big data,while ensuring the safety and real-time data,which provides a strong technical support for the intelligent monitoring and optimization of oil and gas field production.

high frequency and high concurrencydistributed deploymentindustrial control big data

胡斌、闫书杰

展开 >

中国石油化工股份有限公司西南油气分公司信息化管理中心,四川成都 610041

北京亚控科技发展有限公司,北京 100080

高频高并发 分布式部署 工控大数据

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(5)
  • 4