首页|基于改进MaxViT的胰腺肿瘤图像分割

基于改进MaxViT的胰腺肿瘤图像分割

扫码查看
近年来,基于深度学习的图像分割技术在医学图像处理中取得了良好的效果,而在腹部CT图像中分割胰腺肿瘤仍然面临着挑战.由于胰腺肿瘤图像存在大小不一、边界模糊、冗余信息繁杂等问题,现有的网络难以做到精准分割.基于此,本文将MaxViT多尺度信息提取注意力模块嵌入UNETR网络结构,用以改善基准网络模型所存在的不足.
Pancreatic Tumor Image Segmentation Based on Improved MaxViT
In recent years,deep learning image segmentation techniques have shown promising results in medical image processing.However,segmenting pancreatic tumors in abdominal CT images faces challenging.Due to issues such as varying sizes,fuzzy boundaries,and complex redundant information in pancreatic tumor images,existing networks struggle to achieve precise segmentation.To address this,this study embeds the MaxViT multiscale information extraction attention module into the UNETR network structure to improve upon the deficiencies of the baseline network model.This paper proposes an image segmentation network based on an enhanced UNETR model.

image segmentationUNETRPancreatic tumor

生琳、王朝立

展开 >

上海理工大学理学院,上海 200093

上海理工大学光电信息与计算机工程学院,上海 200093

图像分割 UNETR 胰腺肿瘤

国家自然科学基金国防科工局基础研究项目

6217323JCKY2019413D001

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(6)