首页|基于深度学习的共享单车需求预测及调度方法研究

基于深度学习的共享单车需求预测及调度方法研究

扫码查看
共享单车作为一种便捷、环保的交通工具,受到了越来越多人的青睐.然而,随着共享单车的普及和需求增加,如何准确预测用户的需求并合理调度车辆成为一个重要问题.为解决此问题,首先,通过数据收集与预处理,获取大量的共享单车使用数据,并对其进行归一化处理.其次,采用深度学习模型建立准确的需求预测模型,并通过训练数据进行模型训练.针对调度算法设计,本文提出了静态调度策略、动态调度策略和组合调度策略,并设计了相应的调度算法.最后,通过综合优化方法实现需求预测与调度协同优化以及共享单车资源管理策略的优化.
Research on Demand Prediction and Scheduling Methods for Shared Bicycles Based on Deep Learning
As a convenient and environmentally friendly means of transportation,shared bicycles are increasingly favored by more and more people.However,with the popularization and increasing demand for shared bicycles,how to accurately predict user needs and schedule vehicles reasonably has become an important issue.To solve this problem,firstly,through data collection and preprocessing,a large amount of shared bicycle usage data is obtained and normalized.Then,a deep learning model is used to establish an accurate demand prediction model,and the model is trained through training data.For the design of scheduling algorithms,this article proposes static scheduling strategies,dynamic scheduling strategies,and combined scheduling strategies,and designs corresponding scheduling algorithms.Finally,the collaborative optimization of demand forecasting and scheduling,as well as the optimization of shared bicycle resource management strategies,are achieved through comprehensive optimization methods.

shared bicyclesdemand forecastingschedulingdeep learning

马玉婷、张山山、鲍蓉

展开 >

兰州石化职业技术大学,甘肃兰州 730060

共享单车 需求预测 调度 深度学习

2023年度甘肃省高校大学生创新创业训练计划项目2023年度兰州石化职业技术大学教科研项目

S2023162090172023KY-27

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(6)