首页|基于深度特征融合的图像美学质量评价方法研究

基于深度特征融合的图像美学质量评价方法研究

扫码查看
图像美学质量评价旨在利用计算机模拟人类对美的感知与认知,自动评价图像的"美感".尽管现有的基于深度学习的美学质量评价方法已经获得了很好的性能,但它们通常使用卷积神经网络(CNNs)中的高级特征进行美学预测,与美学预测高度相关的底层和中层的特征依旧被忽视.本文提出了基于深度特征融合的美学质量评价方法,该方法从卷积神经网络不同层中抽取特征做特征融合,用融合特征做图像美学分数的预测.为了评估深度特征融合算法的有效性,本文以MobileNetV2、VGG19和Inception-v3网络为基础构建3个深度特征融合网络,并在AVA数据集上进行实验.实验结果表明,相较于原网络中的高层特征,融合特征能显著提高美学预测性能.
Research on Image Aesthetic Quality Evaluation Method Based on Deep Feature Fusion
The evaluation of image aesthetic quality aims to use computer simulations to simulate human perception and cognition of beauty,and automatically evaluate the"beauty"of images.Although existing deep learning based aesthetic quality evaluation methods have achieved good performance,they typically use advanced features from convolutional neural networks(CNNs)for aesthetic prediction,while low-level and mid-level features highly correlated with aesthetic prediction are still overlooked.This article proposes an aesthetic quality evaluation method based on deep feature fusion,which extracts features from different layers of convolutional neural networks for feature fusion,and uses the fused features to predict the aesthetic score of images.In order to evaluate the effectiveness of deep feature fusion algorithms,this paper constructs three deep feature fusion networks based on MobileNetV2,VGG19,and Inception-v3 networks,and conducts experiments on the AVA dataset.The experimental results show that compared to the high-level features in the original network,fused features can significantly improve aesthetic prediction performance.

image aesthetic assessmentconvolutional neural networksdeep learning

孟宣彤、徐欢、修杨

展开 >

江苏师范大学科文学院人工智能与软件学院,江苏徐州 221000

图像美学质量评价 卷积神经网络 深度学习

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(6)