首页|基于机器学习的爆破块度优化预测系统

基于机器学习的爆破块度优化预测系统

扫码查看
矿山的资源开发离不开工程爆破这一关键环节.为了保障作业安全,预测爆破产生的块度至关重要.为准确预测爆破岩石块度,本文提出了一种基于机器学习的爆破块度预测模型,利用Django框架实现了相应的可视化界面系统,方便工作人员通过简易交互实现模型训练.基于实际爆破块度库,引入Spearman特征相关性分析,对输入参数进行相关性预处理.利用DE、GWO和PSO三种优化算法预测矿山中岩石大小,对比得到预测精度最高的DE-XGBoost模型,模型的均方根误差0.0284、平均相对误差8.401%、决定系数0.9698,表明模型对爆破块度预测精度有一定的提升,在实际工程应用中具有较好的前景.
Prediction System of Blasting Rocks Fragmentaion Based on Machine Learning
The development of mining resources cannot be separated from the key link of engineering blasting.It is crucial to predict the block size generated by blasting in order to ensure job safety.To accurately predict the fragmentation of blasting rocks,this paper proposes a machine learning based fragmentation prediction model,which utilizes the Django framework to implement a corresponding visual interface system,facilitating model training through simple interaction among workers.Based on the actual blasting block size library,Spearman feature correlation analysis is introduced to preprocess the correlation of input parameters.By using three optimization algorithms,namely DE,GWO,and PSO,to predict the rock size in mines,the DE-XGBoost model with the highest prediction accuracy was compared.The root mean square error of the model was 0.0284,the average relative error was 8.401%,and the coefficient of determination was 0.9698.This indicates that the model has improved the accuracy of blasting block size prediction to a certain extent and has good prospects in practical engineering applications.

machine learningprediction systemfeature selectionoptimization algorithmblasting block size

崔红艳、张子禄、胡静

展开 >

太原科技大学计算机科学与技术学院,山西太原 030024

机器学习 预测系统 特征选择 优化算法 爆破块度

2022年山西省自然科学研究面上资助项目2021年企业委托横向项目

2022030212111892021035

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(7)