首页|基于DEKF联合CNN-LSTM-Attention的锂电池SOC估计

基于DEKF联合CNN-LSTM-Attention的锂电池SOC估计

扫码查看
锂离子电池的荷电状态(SOC)是电池管理系统(BMS)实现能量优化分配和均衡管理等重要功能的基础,也是电池实时运行状况分析的重要依据.本文主要针对磷酸铁锂电池,首先建立戴维南等效电路模型,通过双扩展卡尔曼滤波(DEKF)开展电池SOC估计;其次将DEKF算法得到的SOC估计值作为特征值,并与实际测量的电流电压信号结合作为模型训练的输入,构建DEKF-CNN-LSTM-Attention算法,从而实现了不同工况下更准确的SOC估计,平均估计误差为1%左右.
SOC Estimation of Lithium Batteries Based on DEKF Combined with CNN-LSTM-Attention
The State of Charge(SOC)of lithium-ion batteries is the basis for battery management systems(BMS)to achieve important functions such as energy optimization distribution and balanced management,and is also an important basis for real-time analysis of battery operation status.This article mainly focuses on lithium iron phosphate batteries.Firstly,a Thevenin equivalent circuit model is established,and the battery SOC estimation is carried out through double extended Kalman filtering(DEKF);Secondly,the SOC estimation value obtained by the DEKF algorithm is used as the feature value,and combined with the actual measured current and voltage signal as the input for model training,to construct the DEKF-CNN-LSTM Attention algorithm,thereby achieving more accurate SOC estimation under different working conditions,with an average estimation error of about 1%.

state of chargedouble extended kalman filterTheveninDEKF-CNN-LSTM-Attention

池贝贝

展开 >

昆明理工大学,云南昆明 650500

荷电状态 双扩展卡尔曼滤波 戴维南 DEKF-CNN-LSTM-Attention

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(7)