首页|基于改进YOLOv7的安全帽佩戴检测算法

基于改进YOLOv7的安全帽佩戴检测算法

扫码查看
为提高作业场所中安全帽佩戴检测的算法精度,本文提出一种基于YOLOv7网络架构进行改进的优化算法.该算法以YOLOv7为基准模型,在其网络的ELAN结构和SPPCSPC结构中引入一种无参数的注意力机制SimAM,取代其原有部分的卷积模块CBS,以增强检测网络的特征提取能力,提升模型对图像中目标和背景的区分能力.在检测头的卷积中引入坐标卷积模块,使得卷积能够感知空间信息,改善目标定位精度低的问题.将YOLOv7中原生的损失函数替换为WIoU损失函数,使算法专注于困难样本,提升其分类性能.在数据集上对改进模型进行验证,实验结果表明,改进后模型平均精度为84.7%,相较于原YOLOv7模型提升了5.7个百分点.通过一系列对比实验证明了改进算法的有效性,相较于主流模型具有一定优势,对后续的研究和应用具有参考价值.
Helmet Wearing Detection Algorithm Based on Improved YOLOv7
To improve the accuracy of the algorithm for detecting the wearing of safety helmets in workplaces,this paper proposes an improved optimization algorithm based on the YOLOv7 network architecture.This algorithm uses YOLOv7 as the benchmark model and introduces a parameter free attention mechanism SimAM in its ELAN structure and SPPCSPC structure,replacing its original convolution module CBS,to enhance the feature extraction ability of the detection network and improve the model's ability to distinguish between targets and backgrounds in images.Introducing a coordinate convolution module into the convolution of the detection head enables the convolution to perceive spatial information and improve the problem of low target localization accuracy.Replace the native loss function in YOLOv7 with the WIoU loss function,allowing the algorithm to focus on difficult samples and improve its classification performance.The improved model was validated on the dataset,and the experimental results showed that the average accuracy of the improved model was 84.7%,which was 5.7 percentage points higher than the original YOLOv7 model.A series of comparative experiments have demonstrated the effectiveness of the improved algorithm,which has certain advantages compared to mainstream models and has reference value for subsequent research and applications.

helmet wearing detectionYOLOv7attention mechanismcoordinate convolution

周孟然、王皓

展开 >

安徽理工大学电气与信息工程学院,安徽淮南 232000

安徽理工大学安全科学与工程学院,安徽淮南 232000

安全帽佩戴检测 YOLOv7 注意力机制 坐标卷积

安徽省自然科学基金能源互联网联合基金重点项目国网安徽省电力有限公司阜阳供电公司科技项目

2008085UD06SGAHFY00TKJS2310510

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(8)