首页|基于手机陀螺仪的助老检测算法研究

基于手机陀螺仪的助老检测算法研究

扫码查看
随着人口老龄化的加剧,老年人跌倒事件成为社会关注的焦点.本研究基于人口老龄化的背景,致力于提高老年人的生活质量,特别是对老年人跌倒事件进行预防和处理.本文设计了基于陀螺仪的助老检测算法并运用到相关App中,该算法旨在通过实时监测老年人的身体姿态和运动状态,及时发现跌倒事件并预防事故的发生.在技术上,本文算法运用陀螺仪传感器获取姿态信息,利用卷积神经网络等深度学习模型进行特征学习,通过长短期记忆网络等模型修复受损图像,并通过阈值检测技术优化修复效果.这一综合的技术方案旨在弥补传统老年护理的不足,提高老年人的生活安全性.算法具有轻便嵌入、高灵敏度、高准确性和快速响应等优势,能够为老年人提供及时援助,降低跌倒事故发生率.
Research on Elderly Assistance Detection Algorithm Based on Mobile Phone Gyroscope
With the intensification of population aging,falls among the elderly have become a focus of social attention.This study is based on the background of population aging,aiming to improve the quality of life of the elderly,especially to prevent and handle falls among the elderly.This article designs a gyroscope based elderly assistance detection algorithm and applies it to related apps.The algorithm aims to detect falls in a timely manner and prevent accidents by monitoring the body posture and movement status of elderly people in real time.Technically,the algorithm in this article uses gyroscope sensors to obtain attitude information,utilizes deep learning models such as convolutional neural networks for feature learning,repairs damaged images through models such as long short-term memory networks,and optimizes the repair effect through threshold detection technology.This comprehensive technical solution aims to compensate for the shortcomings of traditional elderly care and improve the safety of elderly people's lives.Algorithms have the advantages of lightweight embedding,high sensitivity,high accuracy,and fast response,which can provide timely assistance to the elderly and reduce the incidence of falls.

deep learning modelgyroscopethreshold detection

木亚斯尔·卡依木、赵春祥、徐政

展开 >

长春师范大学计算机科学与技术学院,吉林长春 130031

深度学习模型 陀螺仪 阈值检测

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(8)