首页|边缘计算环境下轻量级深度学习入侵检测研究

边缘计算环境下轻量级深度学习入侵检测研究

扫码查看
本研究旨在开发一种轻量级深度学习模型,应用于边缘计算环境下的网络入侵检测.首先,分析并选择适合边缘计算的轻量级模型架构,结合模型压缩和优化技术,如权重剪枝、量化和知识蒸馏等,以降低模型的计算复杂度.其次,利用实际的边缘计算环境对所设计的模型进行了验证,实验结果显示,该模型在保持高检测准确率的同时,显著降低了计算资源的消耗.
Research on Lightweight Deep Learning Intrusion Detection in Edge Computing Environments
This research aims to develop a lightweight deep learning model for network intrusion detection in edge computing environment.First,analyze and select a lightweight model architecture suitable for edge computing,and combine model compression and optimization technologies,such as weight pruning,quantification and knowledge distillation,to reduce the computational complexity of the model.Secondly,the designed model is verified in an actual edge computing environment.The experimental results show that the model significantly reduces the consumption of computing resources while maintaining high detection accuracy.

lightweight deep learning modelsedge computingnetwork intrusion detectionmodel compres-sionknowledge distillation

邱骏驹、杨微

展开 >

广州软件学院,广东 广州 510990

轻量级深度学习模型 边缘计算 网络入侵检测

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(10)