首页|基于开源大语言模型PiSSA微调的多跳问题生成模型

基于开源大语言模型PiSSA微调的多跳问题生成模型

扫码查看
随着机器学习技术的快速发展,"问题解答"任务的重要性越发突显.为了训练良好的问题解答模型,需要大量自然语言描述的问题与对应的回答标签.为了提高模型的推理能力,问题还必须与上下文中的多处信息有关.本文使用大语言模型,结合PiSSA微调技术,提出了一种高效的多跳问题生成方案,使用BERTScore和BLEU指标进行评估,本文模型在多跳问题生成任务上相较于传统模型表现出了显著优势.
A Multi-hop Problem Generation Model Fine-tuned Based on the Open-source Large Language Model PiSSA
With the rapid development of machine learning technology,the importance of"problem-solving"tasks has become increasingly prominent.In order to train a good problem-solving model,a large number of questions described in natural language and corresponding answer labels are required.In order to improve the reasoning ability of the model,the problem must also be related to multiple pieces of information in the context.This article proposes an efficient multi hop problem generation scheme using a large language model combined with PiSSA fine-tuning techniques.BERTScore and BLEU metrics are used for evaluation,and the proposed model demonstrates significant advantages over traditional models in multi hop problem generation tasks.

PiSSA fine-tuningLoRA fine-tuningmulti-hop problem generation

李宗泽

展开 >

华南师范大学数学科学学院,广东 广州 510631

PiSSA微调 LoRA微调 多跳问题生成

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(10)