首页|面向大数据的软件设计模式与应用实践

面向大数据的软件设计模式与应用实践

扫码查看
在大数据时代,海量、多样、快速、真实性高的数据挑战着传统的数据处理方式,促进了分布式存储和计算技术的发展.本文探讨了Hadoop和Spark等框架在大数据处理中的应用,介绍了分布式系统、数据驱动设计和模块化设计等软件设计模式的具体实现.这些模式在处理大规模日志数据的实践中提高了数据处理效率和系统可扩展性,为企业的产品优化和运营决策提供了有力支持.
Software Design Patterns and Application Practices for Big Data
In the era of big data,massive,diverse,fast,and highly authentic data challenges traditional data processing methods,giving rise to the development of distributed storage and computing technology.This article explores the application of frameworks such as Hadoop and Spark in big data processing,and introduces the specific implementation of software design patterns such as distributed systems,data-driven design,and modular design.These patterns have improved data processing efficiency and system scalability in the practice of handling large-scale log data,providing strong support for product optimization and operational decisions of enterprises.

big datasoftware design patternsdistributed systemdata driven

刘瀛

展开 >

河南物流职业学院,河南 郑州 450000

大数据 软件设计模式 分布式系统 数据驱动

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(11)