首页|基于计算机视觉的运动目标跟踪算法优化研究

基于计算机视觉的运动目标跟踪算法优化研究

扫码查看
运动目标跟踪是计算机视觉领域的热点,被广泛运用于交通道路、商场监控、农业生产、国防军事等诸多场景.在复杂的环境下保持运动目标追踪的稳定性与精准度是目前研究人员关注的焦点.在运动目标跟踪算法中,TLD算法性能良好,可进行长时间的有效跟踪,但存在一定局限性,如易被干扰、处理速度较慢等.本文提出一种优化的运动目标跟踪算法,主要是借助KCF算法优化TLD算法的跟踪器,而后结合原有的检测器与学习模块生成新算法.经实验证实,与原来的算法相比,优化后的运动目标跟踪算法在跟踪精确度、处理速度方面均有了明显的提升.
Optimization of Moving Target Tracking Algorithm Based on Computer Vision
Motion target tracking is a hot topic in the field of computer vision,widely used in various scenarios such as traffic roads,shopping mall monitoring,agricultural production,national defense and military.Maintaining stability and accuracy in tracking moving targets in complex environments is currently the focus of researchers'attention.In motion target tracking algorithms,TLD algorithm has good performance and can perform effective tracking for a long time,but it has certain limitations such as being easily interfered with and slow processing speed.This article proposes an optimized motion target tracking algorithm,which mainly utilizes the KCF algorithm to optimize the TLD algorithm tracker,and then combines the existing detector and learning module to generate a new algorithm.Experimental results have shown that compared to the original algorithm,the optimized motion target tracking algorithm has significantly improved tracking accuracy and processing speed.

target tracking algorithmTLD algorithmKCF algorithm

刘易晓

展开 >

华南理工大学,广东 广州 510641

目标跟踪算法 TLD算法 KCF算法

2024

软件
中国电子学会 天津电子学会

软件

影响因子:1.51
ISSN:1003-6970
年,卷(期):2024.45(11)