首页|一种基于VovNet的轻量级农作物虫害分类模型

一种基于VovNet的轻量级农作物虫害分类模型

扫码查看
由于传统CNN模型参数量大,对训练样本及算力要求高,利用深度学习进行农作物虫害识别容易造成农作物识别受到硬件条件限制.本文在VovNet基础上设计一个轻量级LVovNet模型,将VovNet的普通卷积替换为深度可分离卷积,减少了模型参数,提高了GPU利用率,在模型最后加入归一化通道注意力机制,加强网络特征提取能力并控制了网络参数量.用盲蝽、蝗虫、红蜘蛛等12类常见农作物虫害类别共5 785张RGB图片作为测试数据进行验证,该模型识别精度达97.34%,与VGG、ResNet、DenseNet、VovNet等相比,具有参数少、复杂度低、网络延迟低、识别精度高等特征.
A Lightweight Crop Pest Classification Model based on VovNet
Due to the large number of parameters of the traditional CNN model and the high requirements for training samples and computing power,the use of deep learning for crop pest identification is likely to cause crop identification to be limited by hardware conditions.In this paper,a lightweight LVovNet model is designed based on VovNet.The ordinary convolution of VovNet is replaced by deep separable convolution,which reduces the model parameters and improves the GPU utilization.At the end of the model,the normalized channel attention mechanism is added to strengthen the network feature extraction ability and control the number of network parameters.A total of 5 785 RGB images of 12 common crop pests categories such as mirids,locusts and red spiders were used as test data.The recognition accuracy of the model was 97.34%.Compared with VGG,ResNet,DenseNet and VovNet,it has the characteristics of less parameters,low complexity,low network delay and high recognition accuracy.

pest classificationCNNdepth-separable convolutionchannel attention

张彦博、郭小燕、黄海钤、于帅卿

展开 >

甘肃农业大学信息科学技术学院 甘肃兰州 730070

虫害识别 CNN 深度可分离卷积 通道注意力

甘肃农业大学盛彤笙创新基金甘肃农业大学青年导师基金甘肃省自然科学基金

GSAU-STS-2021-16GAU-QDFC-2021-1820JR5RA023

2024

热带农业工程
中国热带农业科学院

热带农业工程

影响因子:0.274
ISSN:
年,卷(期):2024.48(1)
  • 24