首页|基于深度学习模型的雷电落区预报

基于深度学习模型的雷电落区预报

扫码查看
以PredRNN时空预测模型作为骨干网络,ASPP模块为分类器,构建了雷电落区预报的深度学习模型(Lightning-Net).模型以前1h的雷达组合反射率和雷电定位数据为预报因子,输出未来1h的雷电落区.利用2020-2021年重庆市雷达、雷电定位数据对模型进行训练,在2022年的数据集上测试.结果表明:构建的Lightning-Net模型TS(Threat score,威胁分数)评分为0.53、命中率(POD)为0.82,相比传统的光流法和UNet模型具有一定的优势;个例检验发现,模型对强雷暴的预报效果优于弱雷暴,模型对雷电落区变化的整体趋势能很好的把握,但对雷暴主体周围的零星雷电预报能力不足.
Lightning Strike Location Prediction Using a Deep Learning Model
In this study,Lightning-Net,a deep learning model for lightning strike location prediction,was developed using a PredRNN spatio-temporal prediction model as the backbone network,and an Astrus spatial pyramid pooling module as the classifier.The model employed the radar composite reflectivity and the lightning location data of the preceding hour as predictive factors to predict the lightning strike location for the subsequent hour.The model was trained with the radar composite reflectivity and the lightning location data of Chongqing during 2020-2021 and tested with the dataset of Chongqing in 2022.The results show that the Lightning-Net model,with a threat score of 0.53 and a probability of detection of 0.82,demonstrated advantages over traditional optical flow methods and U-Net models.Case studies show that the model's forecasting performance for severe thunderstorms was better than that for weak thunderstorms.While the model adeptly captured the overall trend of lightning strike location changes,it exhibited limitations in predicting sporadic lightning around the main body of thunderstorms.

deep learninglightning strike location predictionradarlightning location data

任照环、林锐、周浩、覃彬全、李卫平、许伟

展开 >

中国气象局气候资源经济转化重点开放实验室,重庆市防雷中心,重庆 401147

中国气象局金佛山国家综合气象观测专项试验外场,重庆 401147

重庆莱霆防雷技术有限责任公司,重庆 401147

重庆市气象安全技术中心,重庆 401147

展开 >

深度学习 雷电落区预报 雷达 雷电定位数据

2024

热带气象学报
中国气象局广州热带海洋气象研究所

热带气象学报

CSTPCD北大核心
影响因子:0.768
ISSN:1004-4965
年,卷(期):2024.40(5)