Advances in Low-Loss Thin-Film Lithium Niobate Photonic Integrated Devices
Recently,due to the rapid development ofion-slicing technique and low-loss nanostructuring technology for thin-film lithium niobate(TFLN),photonic integrated microstructures have been demonstrated on the TFLN platform with high-performances,allowing tight optical field confinement,ultralow propagation loss,fast electro-optic tunability,highly efficienct optical frequency conversion,and strong acousto-optic modulation.This technological advance in turn results in a variety of innovative photonic integrated devices of unprecedented optical qualities,such as meter-scale length electro-optically switchable optical true delay lines,ultrahigh-speed electro-optic modulators,efficienct frequency convertors,on-chip frequency combs,miniaturized microwave sources,bright quantum light sources,high-power waveguide amplifiers,narrow-linewidth microlasers,and compact ultrafast light sources.Up to now,the TFLN photonics is making a great advance in large-scale photonic integrated circuits,and opening an avenue for the further development for fast information processing,precision metrology,integrated quantum information processing and artificial intelligence,enabled by the advances in low-loss wafer-scale nanofabrication technology and the outstanding properties of TFLN.This review begins with the history of bulk lithium niobate optics,and then we survey the development history of ion-sliced TFLN wafer and nanofabrication technologies for TFLN photonic structures.The following sections present various TFLN photonic integrated devices categorized into nonlinear photonics,frequency comb generation,electro-optical modulators,wavelength/mode division multiplexers and coherent light sources.Finally,some conclusions and future perspectives are provided.