针对粒子群算法(PSO)在优化高维多极值问题时容易陷入局部极值的问题,结合分层进化与动态学习策略,提出一种具有动态学习能力的分层进化粒子群优化算法(DHEPSO).该算法首先根据粒子适应度值将粒子划分为不同层级,对不同层级粒子采取不同的进化策略,避免迭代后期种群多样性快速消失;然后根据粒子所属层级的不同动态调整粒子学习能力,在保证算法收敛精度情况下提高算法收敛速度;最后将算法在4个典型函数进行测试,结果表明DHEPSO与传统粒子群算法相比,除病态函数外均能快速达到全局最优.同时,问题维数提升对算法的全局收敛能力影响较小,证明该算法具有良好的稳定性.