首页|加载系统迭代学习控制器设计与控制算法研究

加载系统迭代学习控制器设计与控制算法研究

扫码查看
为了使电动伺服加载系统达到更好的控制效果,解决扭矩跟随效果较差、幅值误差和相位误差较大、复杂的控制算法难以应用等一系列问题,利用模糊控制自适应和迭代学习跟踪精度高的特点,设计一种基于模糊控制的迭代学习控制器.控制器算法采用ST语言编写,并通过实验台的加载采集扭矩曲线.结果表明,基于模糊控制的迭代学习控制器不仅具有普通迭代学习控制器跟踪精度高的优点,还具有模糊控制自适应的特点,能够用更少的迭代次数更快地达到所需要的跟随扭矩曲线,证明了基于模糊控制的迭代学习控制器的优越性和可行性.
Research on Design and Control Algorithm of Iterative Learning Controller for Loading System
In order to make the electric servo loading system achieve better control effect,improve a series of problems such as poor torque fol-lowing effect,large amplitude error and phase error,and difficult to apply complex control algorithm,an iterative learning controller based on fuzzy control is designed by using the characteristics of fuzzy control self-adaptation and high tracking accuracy of iterative learning.The algo-rithm is written in ST language,and the torque curve is collected by loading the experimental bench.It can be seen from the experiment that the iterative learning controller based on fuzzy control not only has the advantages of high tracking accuracy of ordinary iterative learning con-troller,but also has the characteristics of adaptive fuzzy control.It can achieve the required torque curve faster with less iterations,which proves the superiority and feasibility of the iterative learning controller based on fuzzy control.

fuzzy controliterative learningelectric servo loadingST language

李沛辙、白国振

展开 >

上海理工大学 机械工程学院,上海 200082

模糊控制 迭代学习 电动伺服加载 ST语言

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(1)
  • 5