首页|基于多分类器差异的噪声矫正域适应学习

基于多分类器差异的噪声矫正域适应学习

扫码查看
无监督域适应学习旨在利用相关标签丰富的源域知识帮助缺少标签信息的目标域学习,目前常见的域适应方法通常假设源域数据是正确标记的.然而,实际存在的噪声环境会使得源域样本的标签和特征被破坏.为解决源域带噪这一问题,提出基于多分类器差异的噪声矫正域适应学习(NCDA).首先,利用模型中多分类器间的输出差异,提出一个更精细的分类标准,将源域数据分为特征噪声样本、标签噪声样本、干净样本;其次,针对噪声类型提出不同的矫正方法,并将矫正后的样本重新投入模型中训练;最后,采用随机分类器的思想优化模型.在Office-31、Of-fice-Home及Bing-Caltech数据集上与现有算法进行比较,分类准确率比次优方法高0.2%~1.6%,实验结果表明了NC-DA的有效性与鲁棒性.
Noise Correction Domain Adaptation Learning Based on Classifiers Discrepancy
Unsupervised domain adaption(UDA)aims to transfer knowledge from the related and label-rich source domain to the label-scarce target domain.Usually,domain adaptation methods assume that the source data is correctly labeled.However,the labels and features of source samples will be destroyed due to the actual noise environment.To solve the problem of noisy source domain,this paper proposed noise correction domain adaptation based on classifiers discrepancy(NCDA).First,this method made a more precise classification standard by the difference between multiple classifiers in the network,which can divide noisy source samples into feature noise samples,label noise samples,and clean samples.Second,different correction methods were applied on them.Then,the corrected samples were put back into the training procedure.Finally,this paper used the idea of stochastic classifiers to improve the network.Extensive experiments on Office-31,Office-Home and Bing-Caltech demonstrated the effectiveness and robustness of NCDA,whose accuracy is 0.2%~1.6%higher than the sub-optimal method.

unsupervised domain adaptationnoise detectionnoise correctionmachine learning

郑潍雯、汪云云

展开 >

南京邮电大学 计算机学院、软件学院、网络空间安全学院

江苏省大数据安全与智能处理重点实验室,江苏 南京 210023

无监督域适应 噪声检测 噪声矫正 机器学习

国家自然科学基金面上项目国家自然科学基金面上项目国家自然科学基金面上项目

618760916177228462006126

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(1)
  • 3