首页|自主移动机器人三维拣选路径规划研究

自主移动机器人三维拣选路径规划研究

扫码查看
在"货到人"背景模式下自主移动机器人AMR分批次拣选货物路径规划问题中,为了最小化最终完成拣选任务的时间,通过分析AMR拣货模式及作业流程,兼顾AMR自身移动时的速度、货格数量及载重限制,建立混合整数规划模型.在标准的粒子群算法基础上,引入易于跳出局部最优的模拟退火Metropolis准则,并结合曲线递减的动态惯性权重取值和惩罚函数设计一种模拟退火粒子群混合算法求解该模型.最后,以某智能拣选中心为例对模型及算法进行验证,并将模拟退火粒子群混合算法与标准的粒子群算法和模拟退火算法进行比较.结果表明,所提模型和算法在迭代速度和求解偏差方面优于另外两种启发式算法,能有效降低AMR拣选货物的时间,提高智能仓库货物拣选效率.
Research on the Planning of Autonomous Mobile Robot's Three-dimensional Picking Path
A mixed integer programming model is established with the aim of minimizing the time which takes AMR to finally complete the picking task in the"goods-to-person"background mode.It is done by analyzing the picking mode and operation process of AMR and taking in-to account the speed of AMR itself,the number of pallets,and the load limit.A simulated annealing metropolis criterion that is simple to es-cape the local optimal is added to the standard particle swarm algorithm,and when combined with the dynamic inertia weight value and the penalty function of decreasing curve,a simulated annealing particle swarm mixing algorithm is created to solve the model.The model and algo-rithm are then validated using an intelligent picking center as an example.The simulated annealing particle swarm mixing algorithm is com-pared with the standard particle swarm algorithm and the simulated annealing algorithm,and the results show that the proposed model and al-gorithm outperform the other two heuristic algorithms in terms of iteration speed and solution deviation.

goods to personAMRsmart picking centerpath planningsimulated annealed particle swarm mixing algorithm

丁荣宽、董宝力

展开 >

浙江理工大学 机械工程学院,浙江 杭州 310018

货到人 AMR 智能拣选中心 路径规划 模拟退火粒子群混合算法

浙江省自然科学基金教育部产学合作协同育人项目

LY16F020024220902084031751

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(1)
  • 16