首页|基于动态图卷积与迁移学习的蛋白质质量评估

基于动态图卷积与迁移学习的蛋白质质量评估

扫码查看
蛋白质质量评估是指对计算手段预测的蛋白质模型进行评分,从而挑选更接近天然结构的优秀模型.图结构可直观表示蛋白质模型,因此近年来图卷积神经网络(GCN)在质量评估领域得到了广泛应用,然而图节点的固定邻接关系限制了GCN对节点特征深入挖掘的能力.为此,提出一种动态图卷积的质量评估方法DGCQA,预测蛋白质模型的全局质量分数.该方法根据节点的特征距离动态获取邻域,结合多尺度卷积模块提取残基对特征,以增强网络的表达能力.此外,基于迁移学习思想,引入蛋白质预训练模型ESM-1b编码特征,使DGCQA在多个指标上的表现有所提升.实验表明,所提方法相较于CASP13数据集的12种质量评估方法,具有很强的竞争力.
Protein Model Quality Assessment Based on Dynamic Graph Convolution and Transfer Learning
Protein model quality assessment refers to the scoring of protein models predicted by computational methods,so as to select an ex-cellent model that is closer to the native structure.Graph structures can intuitively represent protein models,so graph convolutional neural net-works(GCNs)have been widely used in quality assessment in recent years.However,the fixed adjacency relationship of graph nodes limits the ability of GCN to mine node features deeply.Based on this,a dynamic graph convolution quality assessment method DGCQA is proposed to predict the global quality score of the protein model.This method dynamically obtains the neighborhood according to the feature distance of the node,and combines the multi-scale convolution module to extract the residue pair features to enhance the expressive ability of the network.In addition,based on the idea of transfer learning,the protein pre-training model ESM-1b encoding feature is introduced,which improves the performance of DGCQA on multiple indicators.The final experiments show that DGCQA is highly competitive in comparison with 12 quality as-sessment methods based on the CASP13 dataset.

protein model quality assessmentdynamic graph convolutiontransfer learningESM-1b

冯子健、黄伟鸿、姜博文

展开 >

浙江理工大学 信息科学与工程学院,浙江 杭州 310018

蛋白质模型质量评估 动态图卷积 迁移学习 ESM-1b

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(1)
  • 1