首页|基于多层感知机的轻量级遥感影像语义分割方法研究

基于多层感知机的轻量级遥感影像语义分割方法研究

扫码查看
深度语义分割是常见的遥感影像应用之一.现有的基于深度卷积神经网络的语义分割算法往往不能有效应用于实际环境的图像分割任务,此类网络模型参数较多,计算复杂且运行缓慢.为此,提出一种基于卷积神经网络与多层感知机(MLP)的图像分割网络,包含一个卷积阶段和一个MLP阶段,在编码器与解码器进行跳跃连接的过程中加入一个注意力控制机制,使网络将更多权重放在值得注意的地方.该方法可以有效提取图像的局部特征,同时与其他复杂的神经网络模型相比,可以有效减少参数量和计算复杂度,并保持分割的精确度.最后在多个遥感数据集上进行了测试,结果表明,相比UNet、UNet++、SegNet模型,该模型的参数量为1.471 93 M,平均训练时长为47.973 218 55 s,计算复杂度为5.7 GFLOPs,在一定程度上减少了模型复杂度和运行时长.
Research on Lightweight Remote Sensing Image Semantic Segmentation Method Based on Multilayer Perceptron
Depth semantic segmentation is one of the common remote sensing image applications.The existing semantic segmentation algo-rithms based on depth convolution neural networks can not be effectively applied to image segmentation tasks in real environments.Such net-work models have many parameters,complex calculation and slow operation.For this reason,this paper proposes an image segmentation net-work based on convolutional neural network and multilayer perceptron(MLP),which includes a convolution stage and a MLP stage.An atten-tion control mechanism is added in the process of the jump connection between the encoder and the decoder,so that the network will place more weight in places worthy of attention.The shift based MLP network proposed in this paper can effectively extract local features of images.At the same time,compared with other complex neural network models,the proposed method can effectively reduce the number of parameters and computational complexity,while maintaining the accuracy of segmentation.Finally,the method in this paper is tested on several remote sensing data sets.The results show that the parameters of the model in this paper are 1.471 93M,the average training time is 47.973 218 55s,and the computational complexity is 5.7 GFLOPs,compared with the UNet,UNet++,and SegNet models,which reduces the complexity and running time of the model to a certain extent.

remote sensing imagessemantic segmentationlightweightmultilayer perceptrondeep learningattention mechanism

吕文琪、马骁、简夜明、向毅

展开 >

重庆科技学院 智能技术与工程学院,重庆 401331

遥感图像 语义分割 轻量化 多层感知机 深度学习 注意力机制

重庆市教委重大专项

HZ2021015

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(1)
  • 2