首页|基于交互属性增强的电影评分预测

基于交互属性增强的电影评分预测

扫码查看
电影评分预测旨在预测用户对未评价的电影可能赋予的评分,是推荐系统、电影分类等现实应用的重要依据.现有预测方法主要关注用户与电影的交互信息和文本信息表示,对属性特征的直接表示考虑较少.为此,提出一种基于交互属性增强的电影评分预测模型.首先,考虑使用属性节点在网络中的嵌入向量表示不同的属性特征信息,根据数据间的交互和从属关系构建电影信息网络,利用Metapath2vec算法获得属性节点的嵌入向量,将各属性特征转换为具有不同元路径结构信息及语义信息的向量表示.然后,将用户和电影的属性特征向量输入双塔模型,与各自ID特征向量交互融合,以探索不同属性偏好对用户及电影的影响.最后,得到用户和电影特征向量,通过点积实现用户对电影的评分预测.在公开数据集上的结果表明,所提模型相较于传统模型预测准确性更高,证明了模型的有效性.
Prediction of Movie Ratings Based on Interactive Attribute Enhancement
Movie rating prediction aims to predict the possible ratings that users may give to unreviewed movies,and is an important basis for practical applications such as recommendation systems and movie classification.Existing prediction methods mainly focus on the representa-tion of interaction information and text information between users and movies,with less consideration given to the direct representation of attri-bute features.To this end,a movie rating prediction model based on interactive attribute enhancement is proposed.Firstly,consider using the embedding vectors of attribute nodes in the network to represent different attribute feature information.Construct a movie information network based on the interaction and dependency relationships between data,and use the Metapath2vec algorithm to obtain the embedding vectors of attribute nodes.Convert each attribute feature into vector representations with different meta path structure information and semantic informa-tion.Then,the attribute feature vectors of users and movies are inputted into the two-tower model and interactively fused with their respective ID feature vectors to explore the impact of different attribute preferences on users and movies.Finally,the user and movie feature vectors are obtained,and the user's rating prediction for the movie is achieved through dot product.The results on public datasets indicate that the pro-posed model has higher prediction accuracy compared to traditional models,demonstrating the effectiveness of the model.

movie rating predictionMetapath2vectwo-tower modelinteractive attribute

许星波、张明西、赵瑞、朱衍熹

展开 >

上海理工大学 出版印刷与艺术设计学院,上海 200093

电影评分预测 Metapath2vec 双塔模型 交互属性

国家自然科学基金国家重点研发计划上海市自然科学基金

620022252021YFF090040021ZR1445400

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(1)
  • 1