首页|YOLOv4-Balance:样本均衡的目标检测网络

YOLOv4-Balance:样本均衡的目标检测网络

扫码查看
针对因数据集中小目标样本数量不足且分布不均衡,导致算法对小目标检测精度低的问题,在多尺度目标检测模型YOLOv4的基础上,提出一种融合动态损失反馈与数据增强的多尺度目标检测算法YOLOv4-Balance.首先,提出一种基于图像组合拼接的数据增强算法U-Mix,均衡小目标样本的分布,提高数据集中的小目标学习样本质量.其次,基于模型训练迭代时的Loss反馈,提出一种利用动态损失反馈的多尺度模型训练算法DLF,以提高训练过程中小目标样本损失对模型学习的贡献度.实验结果表明,该算法在MSCOCO数据集上的平均精度较基线模型YO-LOv4提升了约2.1%,对小目标样本的检测精度提升了约2.8%.该算法不会引入额外的计算开销,且模型收敛快速,有助于高效进行训练.
YOLOV4-Balance:Object Detection Network Based on Sample Balance
In order to solve the problem that the algorithm has low detection accuracy for small targets due to insufficient number of small tar-get samples in the dataset and unbalanced distribution.Based on the multi-scale target detection model YOLOv4,YOLOv4-Balance was pro-posed which combines dynamic loss feedback and data augmentation.First,in order to balance the distribution of small target samples and en-rich the quality of small target samples in the data set,a data enhancement algorithm U-Mix based on image combination and stitching is pro-posed.Secondly,based on the Loss feedback during model training iterations,a multi-scale model training algorithm DLF(Dynamic loss feed-back)using dynamic Loss feedback is proposed to improve the contribution of the small target samples to the model during the training pro-cess.The experimental results show that in the MS COCO dataset,compared with the baseline model YOLOv4,the average accuracy of YO-LOv4-Balance is improved by 2.1%and the detection accuracy for small target samples is improved by 2.8%.The algorithm in this paper will not introduce additional computational overhead,and the model converges quickly,which is conducive to efficient training.

object detectionsample balancedata enhancementfeedback drivemultiscale

周泽清、於跃成、顾宙瑜

展开 >

江苏科技大学计算机学院,江苏镇江 212000

目标检测 样本均衡 数据增强 反馈驱动 多尺度

国家重点研发计划江苏省建设系统科学技术项目

2018YFC03091042021JH03

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(2)
  • 20