首页|基于偏置交叉注意力的点云配准算法

基于偏置交叉注意力的点云配准算法

扫码查看
点云配准对机器视觉、人工智能等领域的发展起到了重要作用.针对传统点云配准算法与现有深度学习点云配准算法精度低和鲁棒性差的问题,提出一种基于偏置交叉注意力的点云配准网络模型O CADGCNN.该模型在动态图卷积神经网络(DGCNN)中插入偏置注意力模块用于提取全局特征向量,充分利用点云的局部结构信息和空间语义信息以减少信息损失;在特征提取中加入残差连接以提高网络性能;使用交互注意力模块实现全局特征之间的信息交换,以增强相关信息,抑制非重叠区域信息的干扰.实验结果显示,OCADGCNN模型在无噪和少量噪声的ModleNet40数据集中配准效果均优于ICP、PointNetLK、PCRNet、OMNet和DOPNet等配准方法,配准精度较高.在未知类别的实验中,OCADGCNN模型泛化能力较高,通用性良好,在点云完整度降低的情况下能够较好地处理低重叠度点云.
Point Cloud Registration Algorithm Based on Offset Cross Attention
Point cloud registration plays an important role in the development of machine vision,artificial intelligence and other fields.A point cloud registration network(OCADGCNN)based on offset cross-attention is presented to overcome the low accuracy and poor robustness of traditional point cloud registration algorithms and existing deep learning point cloud registration algorithms.The offset attention module is in-serted into the Dynamic Graph Convolution Neural Network(DGCNN)to extract global eigenvectors,which can make full use of the local structure and spatial semantics information of point clouds and reduce the loss of information.Include residual connections in feature extraction to improve network performance.The interactive attention module is used to exchange information between global features,enhance related in-formation,and suppress the interference of non-overlapping area information.The experimental results show that the registration effect of OCADGCNN is better than ICP,PointNetLK,PCRNet,OMNet and DOPNet in both noise-free and low-noise ModleNet40 data sets,and the registration accuracy is high.In the experiments of unknown categories,the model has high generalization ability and good versatility,and can better handle low overlap point clouds when the integrity of point clouds is reduced.

point cloudregistrationdeep learningattention mechanismdynamic graph convolutionfeature interaction

李新、董璐语、宋刘广、孙钰琦

展开 >

桂林理工大学信息科学与工程学院

广西嵌入式技术与智能系统重点实验室,广西桂林 541000

点云 配准 深度学习 注意力机制 动态图卷积 特征交互

广西壮族自治区科技计划广西嵌入式技术与智能系统重点实验室开放基金(2020)

2020GXNSFAA297255

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(2)
  • 32