首页|基于分裂注意力机制的DNA转录因子结合位点预测

基于分裂注意力机制的DNA转录因子结合位点预测

扫码查看
准确识别DNA序列中的转录因子结合位点对于基因表达解析和药物设计等具有重要意义.基于深度学习的各种预测方法已被应用于转录因子结合位点任务中,但预测性能尚有提升空间.为此,提出一种新的深度学习方法ResNest-TFBS,用于预测690个ChIP-seq数据集上的转录因子结合位点.该方法首先在序列One-hot编码的基础上通过引入DNA的分子动力学特征与静电势能特征提取DNA的空间结构特性;其次利用分裂注意力机制与残差结构组成ResNest模型进行训练,从而将通道注意力机制应用于不同通道分支,以捕获其在全局数据集上学习到的特征间交互与多通道表示;最后将上述先验知识迁移至690个ChIP-seq数据集上,并进行广泛测试.实验结果表明,ResNest-TFBS性能优异,平均AUC为0.929.此外,通过SHAP工具验证不同特征在该任务中的贡献程度,证实所引入的特征为转录因子结合位点预测提供了更具价值的生物学线索.
DNA Transcription Factor Binding Site Prediction Based on Split-Attention Mechanism
Accurately identifying Transcription factor binding sites in DNA sequences is of great significance for gene expression analysis and drug design.Various prediction methods based on deep learning have been applied to transcription factor binding site tasks,but there is still room for improvement in prediction performance.To this end,a new deep learning method ResNest-TFBS is proposed for predicting transcrip-tion factor binding sites on 690 ChIP seq datasets.This method first extracts the spatial structural characteristics of DNA by introducing molec-ular dynamics features and electrostatic potential energy features based on sequence One-hot encoding;Then,the ResNest model is trained using the split attention mechanism and residual structure to apply the channel attention mechanism to different channel branches,in order to capture the interaction and multi-channel representation of features learned on the global dataset;Finally,the above prior knowledge was transferred to 690 ChIP seq datasets and extensively tested.The experimental results show that ResNest-TFBS has excellent performance,with an average AUC of 0.929.In addition,the SHAP tool was used to verify the contribution of different features in this task,confirming that the introduced features provide more valuable biological clues for predicting transcription factor binding sites.

DNAtranscription factor binding sitesdeep learningtransfer learningsplit attention mechanism

姜博文、冯子健、黄伟鸿

展开 >

浙江理工大学计算机科学与技术学院

浙江理工大学信息科学与工程学院,浙江杭州 310018

DNA 转录因子结合位点 深度学习 迁移学习 分裂注意力机制

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(2)
  • 25