首页|基于改进节点收缩法的复杂网络节点重要性评估

基于改进节点收缩法的复杂网络节点重要性评估

扫码查看
识别网络中的重要节点对研究网络的拓扑结构及功能特性具有重要的实际应用价值.为了更好地挖掘复杂网络中的重要节点,考虑到节点核心位置和网络拓扑结构变化对节点重要性评估的影响,基于节点收缩法提出两类改进的复杂网络重要节点评估方法,并进行仿真实验与比较分析.一方面,k-shell值对节点位置可进行粗粒化评估,将节点的k-shell值与网络中所有k-shell值之和的比作为节点收缩法得到的节点重要度(IMC)系数,提出基于新的节点重要度K-IMC的改进算法;另一方面,利用网络结构熵刻画网络拓扑结构的变化,结合收缩前后网络标准结构熵的变化,提出基于又一新的节点重要度E-IMC的改进算法.在此基础上,对两类改进的重要节点评估算法进行仿真实验,运用SIR模型和鲁棒性测试对算法性能进行评价与分析.实验结果表明,相较于原始节点收缩法,K-IMC算法和E-IMC算法的重要节点排序结果均表现出更高的准确性.其中,E-IMC算法相较K-IMC算法的准确性更高,K-IMC算法相较E-IMC算法的运算效率更高.
Evaluation of Node Importance in Complex Networks Based on Improved Node Contraction Method
Identifying the important nodes in the network has important practical value for studying the topology and functional characteristics of the network.In order to better mine the important nodes in complex networks,considering the impact of the changes of node core location and network topology on the evaluation of node importance,two improved evaluation methods of important nodes in complex networks are pro-posed based on the node shrinkage method,and simulation experiments and comparative analysis are carried out.On the hand,combined with the characteristic that k-shell value can evaluate the coarse-grained location of nodes,the ratio of k-shell value of nodes to the sum of all k-shell values in the network is taken as the coefficient of node importance(IMC)obtained by node shrinkage method,and an improved algo-rithm based on the new node importance K-IMC is proposed;On the other hand,the change of network topology is described by network struc-ture entropy.Combined with the change of network standard structure entropy before and after shrinkage,an improved algorithm based on an-other new node importance E-IMC is proposed.On this basis,simulation experiments are carried out on these two improved important node evaluation algorithms,and the performance of the algorithm is evaluated and analyzed by using SIR model and robustness test.The experimen-tal results show that K-IMC algorithm and E-IMC algorithm show better accuracy in sorting important nodes compared with the original node shrinking method.In terms of accuracy,E-IMC algorithm is higher than K-IMC algorithm,and in terms of operational efficiency,K-IMC al-gorithm is better than E-IMC algorithm.

complex networknode contraction methodk-shellstandard structure entropy

蔡晓楠、郑中团

展开 >

上海工程技术大学数理与统计学院,上海 201620

复杂网络 节点收缩法 k-shell 标准结构熵

全国统计科学研究项目全国统计科学研究项目

2018LY162020LY080

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(2)
  • 22