首页|求旅行商问题的幂律变换优化蚁群算法

求旅行商问题的幂律变换优化蚁群算法

扫码查看
为解决旅行商问题,依据蚁群系统在蚁群算法中的优化,提出一种基于幂律变换的优化蚁群算法.首先,利用幂律变换优化蚁群算法以改善信息素局部更新公式;然后,在状态转移中使用幂律变换种群走过每条路径的次数,并通过归一化处理来分析信息素局部更新所造成的影响,以加快模型收敛速度;最后,随机加入莱维飞行对全局信息素进行扰乱,防止模型过早陷入局部最优.经过TSPLAB数据库提供的大量实例验证,幂律变换优化蚁群算法在保持较快收敛速度的基础上,能有效避免模型过早陷入局部最优.
Power-law Transformation Optimized Ant Colony System for the Travel Quotient Problem
To solve the traveling salesman problem,a power law transformation based optimization ant colony algorithm is proposed based on the optimization of ant colony system in ant colony algorithm.Firstly,using power-law transformation to optimize ant colony algorithm to im-prove the local updating formula of pheromones;Then,in the state transition,a power-law transformation is used to determine the number of times the population has traversed each path,and the impact of local pheromone updates is analyzed through normalization to accelerate the convergence speed of the model;Finally,random addition of Levy flight to disrupt global pheromones prevents the model from falling into lo-cal optima too early.Through a large number of instances provided by the TSPLAB database,it has been verified that the power law transforma-tion optimized ant colony algorithm can effectively avoid the model from falling into local optima too early while maintaining a fast convergence speed.

travel quotient problemant colony optimizationpower-law transformationLévy flight

唐存花、汤可宗

展开 >

景德镇陶瓷大学信息工程学院,江西景德镇 333403

旅行商问题 蚁群算法 幂律变换 莱维飞行

国家级大学生创新训练项目江西省教育厅科学技术研究项目

202210408015GJJ211331

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(2)
  • 26