首页|基于改进遗传算法的混合流水车间批量调度问题求解

基于改进遗传算法的混合流水车间批量调度问题求解

扫码查看
针对多品种小批量混流生产模式中生产计划调度复杂的特点,提出解决批量问题的等量分批策略,实现工件在不同工序上同时加工,缩减机器等待时间;以最大完工时间为优化目标,建立混合流水车间批量调度问题数学模型;设计求解模型的改进遗传算法,使用NEH启发式算法和随机生成结合的方式生成优质初始解,采用二元锦标赛进行选择操作,采用二元交叉法进行交叉操作,采用插入变异生成新个体,并使用贪婪插入的领域搜索算法进行局部搜索,解码时采用"子批优先+先空闲先加工"策略.发动机连杆生产案例应用结果表明,混合流水车间批量调度问题模型与改进的遗传算法正确有效.
Hybrid Flow Shop Batch Scheduling Problem Solving Based on Improved Genetic Algorithm
To address the complex production planning and scheduling characteristics of the mixed flow production model with multiple variet-ies and small batches,this paper presents an equal batching strategy to solve the batching problem,so as to realize the simultaneous process-ing of workpieces in different processes and reduce the machine waiting time.With the maximum completion time as the optimization objec-tive,this paper establishes a mathematical model of the batch scheduling problem in the mixed flow shop;this paper designs an improved ge-netic algorithm to solve the model,using a combination of the NEH heuristic algorithm and random generation.The improved genetic algorithm is designed to generate high-quality initial solutions using a combination of the NEH heuristic algorithm and random generation,a binary tour-nament for selection operations,a binary crossover for crossover operations,insertion variation for generating new individuals,a greedy inser-tion of the domain search algorithm for local search,and a"sub-batch first+idle first"strategy for decoding.The application results of the en-gine connecting rod production case show that the hybrid flow shop batch scheduling problem model and the improved genetic algorithm are correct and effective.

hybrid flow shoplot-streaminggenetic algorithmbatch strategy

宁方华、黄丙齐、周晓敏

展开 >

浙江理工大学机械工程学院,浙江杭州 310018

浙江大华技术股份有限公司,浙江杭州 310053

混合流水车间 批量流 遗传算法 分批策略

国家自然科学基金浙江省"尖兵""领雁"研发攻关计划(2023)

514754342022C01SA111123

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(2)
  • 20