首页|基于深度森林的多类型DDoS攻击检测方法

基于深度森林的多类型DDoS攻击检测方法

扫码查看
分布式拒绝服务攻击(DDoS)是网络安全的主要威胁之一.近年来,基于多种不同DDoS攻击方式的混合攻击数量大幅增长,如何在保证精度的前提下同时检测多种类型的DDoS攻击成为亟待解决的问题.为此,提出一种基于深度森林的多类型DDoS攻击检测方法.该方法首先使用基于平均不纯度的特征选择算法对多类型异常流量数据集进行特征排序与特征筛选;然后使用多粒度扫描对DDoS训练集进行特征提取,并使用级联森林分层训练模型,最终生成可用于DDoS恶意流量检测与分类的深度森林模型.实验结果表明,与6种主流树类集成学习模型相比,基于改进深度森林的DDoS攻击检测方法训练得到的分类器准确率最低提升了 0.8%,召回率最低提升了 0.9%;与改进前相比,改进后模型准确率提升了 1.3%,加权召回率提高了 1.3%,训练时间减少了 29.7%.模型整体性能有明显提升.
Multi-Type DDoS Attack Detection Method Based on Deep Forest
Distributed denial of service(DDoS)attacks are one of the main threats to network security.In recent years,the number of mixed attacks based on various different DDoS attack methods has significantly increased.How to simultaneously detect multiple types of DDoS at-tacks while ensuring accuracy has become an urgent problem to be solved.To this end,a deep forest based multi type DDoS attack detection method is proposed.This method first uses a feature selection algorithm based on average impure to sort and filter features on multiple types of abnormal traffic datasets;Then,multi granularity scanning is used to extract features from the DDoS training set,and a cascaded forest hierar-chical training model is used to generate a deep forest model that can be used for DDoS malicious traffic detection and classification.The exper-imental results show that compared with six mainstream tree class ensemble learning models,the classifier trained based on the improved deep forest DDoS attack detection method has the lowest accuracy improvement of 0.8%and the lowest recall improvement of 0.9%;Compared with before the improvement,the accuracy of the improved model increased by 1.3%,the weighted recall increased by 1.3%,and the training time decreased by 29.7%.The overall performance of the model has significantly improved.

multi-type attack detectiondistributed denial of service attackdeep forestmulti-granularity scanningcascade forestaver-age impurity

徐精诚、陈学斌、董燕灵

展开 >

华北理工大学理学院

河北省数据科学与应用重点实验室

唐山市数据科学重点实验室,河北唐山 063210

多类型攻击检测 分布式拒绝服务攻击 深度森林 多粒度扫描 级联森林 平均不纯度

国家自然科学基金

U20A20179

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(2)
  • 1
  • 20