首页|实例级全局—局部联合语义标签引导图像生成

实例级全局—局部联合语义标签引导图像生成

扫码查看
针对语义引导图像生成任务中局部图像空间组合搭配合理性欠佳、生成图像清晰度较低、生成图像与语义标签不匹配等问题,提出结合局部-全局网络与实例级优化的语义引导图像生成方法.首先,在全局网络中使用实例级自适应归一化方法,对网络中的相同实例进行自适应随机采样,并为每个实例进行独立的参数调制,提高全局实例级空间布局相关性;其次,构建局部生成网络,根据实例类标签分别为每个实例构建子生成器,从而提取更多精细特征;再次,采用实例特征分类,对生成的实例图像进行分类反馈,确保具有相同语义标签实例图像的一致性;最后,联合局部-全局网络,将细粒度局部实例图像融合到全局图像中,实现全局尺度上实例级清晰展现.优化后的模型在COCO-stuff、ADE20K、Cityscapes上进行了测试,实验结果表明,整体视觉效果更加细腻逼真,MIoU平均提升2.7,FID平均下降5.1.
Instance-level Global-Local Joint Semantic Masks Guided Image Generation
Aiming at the inconsistency problem between the generated image and the semantic layouts in the semantic image synthesis,as well as the unsatisfactory image quality and the irrationality of the combination and collocation of local image,a semantic image synthesis method combining the local-global network model and the instance-adaptive normalization method is proposed.In the global network,the in-stance-adaptive normalization model is used to stochastically sample the congeneric instance in the network to independently modulate the pa-rameters of each instance,so as to improve the instance matching degree at the global level;build a local generation network,and construct sub generators for each instance according to instance labels,enabling it to capture finer details;the local and global network is combined to fuse local instance image features into the generated image,enabling it to achieve clear instance-level presentation on the global scale.The op-timized model has been tested on COCO-stuff,ADE20K,and Cityscapes.The experimental results show that the overall visual effect is more exquisite and realistic,with an average increase of 2.7 MIoU and an average decrease of 5.1 FID.

image generationimage translationGANsemantic maskslocal generatorinstance adaptive

胡新荣、王生辉、蔡浩、罗瑞奇

展开 >

湖北省服装信息化工程技术研究中心

纺织服装智能化湖北省工程研究中心

武汉纺织大学计算机与人工智能学院,湖北武汉 430200

图像生成 图像翻译 生成对抗网络 语义标签 局部生成器 实例自适应

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(2)
  • 33